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The transport of particles (diameter 0.56 μm) by magnetic forces in a small blood
vessel (diameter D = 16.9 μm, mean velocity U = 2.89 mm/s, red cell volume fraction
Hc = 0.22) is studied using a simulation model that explicitly includes hydrodynamic
interactions with realistically deformable red blood cells. A biomedical application
of such a system is targeted drug or hyperthermia delivery, for which transport to the
vessel wall is essential for localizing therapy. In the absence of magnetic forces, it
is seen that interactions with the unsteadily flowing red cells cause lateral particle
velocity fluctuations with an approximately normal distribution with variance σ

= 140 μm/s. The resulting dispersion is over 100 times faster than expected for
Brownian diffusion, which we neglect. Magnetic forces relative to the drag force on a
hypothetically fixed particle at the vessel center are selected to range from � = 0.006
to 0.204. The stronger forces quickly drive the magnetic particles to the vessel wall,
though in this case the red cells impede margination; for weaker forces, many of the
particles are marginated more quickly than might be predicted for a homogeneous
fluid by the apparently chaotic stirring induced by the motions of the red cells. A
corresponding non-dimensional parameter � ′, which is based on the characteristic
fluctuation velocity σ rather than the centerline velocity, explains the switch-over
between these behaviors. Forces that are applied parallel to the vessel are seen to
have a surprisingly strong effect due to the streamwise-asymmetric orientation of
the flowing blood cells. In essence, the cells act as low-Reynolds number analogs
of turning vanes, causing streamwise accelerated particles to be directed toward the
vessel center and streamwise decelerated particles to be directed toward the vessel
wall. C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718752]

I. INTRODUCTION

Ferromagnetic nanometer-scale particles are biomedically attractive for targeted delivery of
drugs (e.g., chemotherapy) or therapeutic heating (hyperthermia).1 Such particles can sometimes be
injected locally to treat a downstream disease location (e.g., a tumor), but a more versatile application
is to introduce them intravenously and then collect them to a target by an externally applied magnetic
field. A permanent magnet can be used to collect particles near the surface, as was first suggested
over 30 years ago.2 The depth of the treatable region, which, for example, determines the deepest
tumors that can be accessed, is set by the applied magnetic forces, which hold the particles in place
against the blood flow. In recent years, novel multifunctional coatings and high magnetic moment
particles have broadened the range of potential therapeutic applications,3 as have means of using
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magnetic resonance imaging (MRI) or MRI-like technology to steer particles to particular internal
targets.4, 5

Advection-diffusion models for the transport and capture of magnetic particles have shown
general agreement with experiments;6, 7 we here focus on the complex of the interactions of the
particles with flowing blood cells. In capillaries and the smallest venules and arterioles, the cellular
character of blood is an essential factor leading to its widely known non-Newtonian character.8

Interactions with blood cells are also anticipated to be of importance for particle transport in small
vessels.

The magnetic particles of interest here are on the same scale or smaller than platelets, and
observations of platelet transport might therefore be relevant. Platelet-sized particles have been
shown to be marginated in vessels via interactions with blood cells,9, 10 though their rate of diffusion
appears to significantly decrease near vessel walls,11 presumably because of the well-known near-
wall cell-depleted region. Based upon this, we can anticipate that the magnetic particles might
preferentially collect near to the vessel wall even in absence of magnetic forces. Thus, cell-enhanced
diffusion should significantly reduce the requisite magnetic field strength well below what might
be expected based upon relatively simple homogeneous fluid diffusive transport models, though
external forces might still be important for the final stage of crossing the cell-free zone to the vessel
wall. In the present study, we will consider both weak magnetic forces, where red cell-induced
diffusive-like transport dominates magnetically forced transport, as well as magnetic forces strong
enough to dominate the motion of the particles. In all cases considered, even in absence of applied
forces, the effective diffusion caused by cellular interactions is expected to be 100 times faster than
thermal Brownian diffusion, which is therefore neglected (see Sec. II A).

Given the approximate streamwise symmetry of a blood vessel, it might not be anticipated
that the streamwise component of the magnetic force will have any substantial effect. However,
flowing red cells have a streamwise asymmetric12, 13 structure, which has the potential to break this
symmetry. We shall see that such a force can indeed alter the particle interactions with blood cells
in an asymmetric fashion, even when it is so weak that its effect on particle residence times is small.

We investigate these issues in a model geometry that includes realistically flexible flowing
red cells. Section II summarizes the flow parameters, the physical model, the algorithm used
to numerically solve the flow, and the simulation procedure. Results are discussed in Sec. III
for cellular transport of particles without magnetic forces, for increasing cross-stream magnetic
forces, and for a range of magnetic force strengths parallel and counter-parallel to the flow
direction.

II. SIMULATION MODEL

A. Flow parameters

The round-tube model of a small blood vessel is shown in Figure 1 [see Video 1 for an animation
of the subsequent flow]. It is streamwise periodic to model a longer tube than could be efficiently
simulated directly. For a red cell with volume 4πa3

o/3 = 93.94 μm3, the vessel diameter is D = 6ao

= 16.9μm and its length is Lz = 12.7ao = 33.9μm. There are 19 red cells included in the simulation,
which yields a mean tube hematocrit (red cell volume fraction) of Hc = 0.22. The mean velocity in
all cases is U = 2.89 mm/s, which corresponds to a physiologically relevant8 pseudo-shear rate of
U/D = 171s−1.

Ten magnetic particles are modeled as rigid spheres, each with radius of ap = 0.1ao = 0.282 μm
and hence 1000th the red cell volume. Based upon an Einstein estimate of the thermal diffusion
of a sphere in a fluid with the plasma viscosity (≈5 × 10−14 m2/s), the average arrival time for
such particles released at the vessel center to reach the wall would be around 500 s in absence of
cellular interactions. Since this far exceeds the time of the particle transport we shall see due to
the unsteady motions of the cells, we neglect all such Brownian diffusion in our study of transport
toward the wall, though it will undoubtedly become important in the final stages before actual wall
contact.

http://dx.doi.org/10.1063/1.4718752.1
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FIG. 1. Visualization of the initial condition showing the red cells and magnetic particles (enhanced online) [URL:
http://dx.doi.org/10.1063/1.4718752.1].

The strength of the magnetic force relative to a hypothetical vessel centerline hydrodynamic
drag is

� = magnetic force

Stokes drag for centerline velocity
= F

6πμbapVc
= VR

Vc
, (1)

where VR is the (vector) velocity that would be induced by the applied magnetic force on an isolated
particle in a homogeneous Newtonian fluid with viscosity μb. For Hc = 0.22, μb is approximately
twice the plasma viscosity, so we take μb = 2μ = 0.0024 Pa s.14 This non-dimensional force � has
been shown significant in magnetic particle capture15 and has been termed a magnetic Richardson
number.7 Any magnetic shielding effects are neglected so the magnetic field is assumed to apply
identical forces to each particle. The centerline velocity is Vc = 4.6 mm/s in all cases (see Sec.
III A). Of the components of � = (�x , �y, �z), we will focus primarily on �x, which forces the
magnetic particles perpendicular to the flow direction. It will be varied from �x = 0 to 0.204.
Symmetry indicates that negative �x or finite �y would not yield statistically different behavior
from the �x ≥ 0 and �y = 0 cases considered. We also consider finite �z from �z = −0.204
to 0.204 along the axis of the tube. For reference, �z = −1 should hold the particle in place
against the drag force exerted by the flow of homogeneous fluid with viscosity μb. The actual
forces range up to 2.9pN per particle. Specific parameters for specific cases will be discussed
in Sec. III.

The red cells are modeled as fluid filled elastic shells, which resist both bending and in-plane
shear. It is thought that the interior viscosity of a red cell is several times that of the suspending
plasma,16 with a factor of λ = 5 a common choice in models,17 but detailed simulation studies
have also shown that the basic flow of red cells in small vessels is relatively insensitive to this.13

The particular solver we use (Sec. II B) is more efficient for cell interior and plasma viscosities
that match, so we use this as a model in the present study. The specific parameters used in the
neo-Hookean elastic model for the shell-membrane stresses are those of Pozrikidis,17 which are
based upon experimental measurements: shear modulus Es = 4.2 × 10−6 N/m and bending mod-
ulus Eb = 1.8 × 10−19 N m. Red cells are well known to have a nearly constant membrane area,
which is modeled here with a large penalty-like dilatation modulus: Ed = 67.7×10−6 N/m. This
model is, in a sense, crude in that red cell membranes will require a more complex constitutive
model to reproduce behavior in many conceivable situations. However, it has matched the non-
monotonic effective viscosity measurements for flow in round tubes ranging from D = 5 μm up
to D = 28 μm.18, 19 The same flow regime is studied herein, so the model is therefore expected to

http://dx.doi.org/10.1063/1.4718752.1
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perform well. We also neglect in-membrane viscosity, which is large and has not been shown to
be important for flows such as we consider, though it too undoubtedly becomes important in some
circumstances.

B. Flow solver

For the low Reynolds numbers of the microcirculation (here ρUD/μ = 0.003), the govern-
ing equations can be approximated by their viscous limit and crafted into a boundary integral
formulation.20 This is solved with the fast algorithm we have developed and reported in Refs. 18
and 19. In brief, the surface of each cell or magnetic particle is discretized with a two-dimensional
structured mesh of surface elements, and the vessel wall is discretized with an unstructured surface
mesh of 25 704 triangular elements. To evaluate the hydrodynamic interactions of all these Np surface
elements, the periodic-box Green’s functions of the Stokes operator are split into close-range inter-
actions, which are computed directly, and long-range interactions, which are evaluated using Fourier
methods on a mesh. Our basic algorithm is similar to the particle-mesh-Ewald algorithm proposed
for suspensions by Saintillan et al.21 The result is that the overall N 2

p point-to-point interactions are
computed with a computational cost that scales as Nplog Np. The force required to enforce the no-slip
boundary condition is solved iteratively with a GMRES (Ref. 22) algorithm using a single-layer
formulation.20 The rigidity of the magnetic particles introduces an implicit system, which is also
solved iteratively using GMRES. As crafted, this linear system is unsuited for iterative solution due
to the eigenvalues associated with the rigid-body motions of the particles, so these corresponding
eigenvectors are projected out of the linear system using an established deflation procedure before
the iterative solution.20, 23

The elastic forces exerted by the cells on the fluid are evaluated using a spherical harmonic
representation of the cell shape. This is advantageous in that a small number of degrees of freedom
provide an accurate description of both the cell shape and the derivatives necessary to calculate
the elastic stresses. It also facilitates numerical stability without the addition of artificial numerical
dissipation. In the present study, a spherical harmonic expansion of maximal degree N = 16 for each
coordinate component (x, y or z) represents each cell, which corresponds to N2 degrees of freedom
per component per cell. Nonlinear operations are performed on a finer surface mesh with a spherical
harmonic expansion of maximum degree of M = 3N to maintain stability via what amounts to an
approximate de-aliasing procedure.18, 19

C. Simulation procedure

The common initial condition used for all the reported simulations is visualized in Figure 1.
To generate it, the 19 red cells were simulated without magnetic particles for time t ≈ 100 ms,
which allowed 10 flow-throughs of the Lz = 35.9μm streamwise-periodic tube as shown. This was
sufficiently long to establish an apparently random distribution of cells within the tube. At this point,
the 10 magnetic particles were distributed along the tube centerline (r = 0) in positions vacant of
red cells. The specific locations can be seen in Figure 1. For the cases with magnetic fields, these
forces where initiated immediately. Particle positions as well as the shapes and positions of all the
red cells were tracked in time.

III. RESULTS

A. Red-cell flow statistics

The mean velocity profile in small blood vessels is well known to be blunted, significantly flatter
than the Poiseuille-flow parabola for a constant viscosity homogeneous Newtonian fluid. Long,24

for example, shows this clearly in vessels down to D = 24 μm. We do not attempt to replicate any
particular set of experimentally studied flow parameters, but the flowing cells in the present case
show this expected blunting in Figure 2. The parabolic velocity profile for the corresponding plasma-
viscosity Poiseuille flow is also shown for comparison. Our past validation against measured effective
viscosities suggest that the overall rheology is quantitatively realistic.18, 19 Given the relatively small
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FIG. 2. Mean velocity versusr =
√

x2 + y2: ——— simulations and – – – – the corresponding Poiseuille-flow for the same
pressure gradient. The simulation results show overlaying results for three cases: � = (0, 0, 0), (0, 0, 0.1), and (0, 0, −0.1).

size of the magnetic particles, we would not expect any significant effect on the flow, which is
confirmed in Figure 2. Even when the magnetic forces are aligned parallel with the flow direction
mean-flow profiles still overlay one another on the plot.

Red cells are also known to deform significantly under physiologic flow conditions, as is clear
in Figure 1. In the smallest vessels, where they are constrained to flow in a single file, they become
bullet-shaped; in slightly larger vessels they take on what is sometimes call a slipper-like shape. We
shall see that their orientation, particularly their streamwise asymmetry, is an important factor in the
transport of the magnetic particles.

To quantify cell orientation, we use a metric based upon the principal axes of the cell shapes,
which can be used to generate fitted ellipsoids. This follows the same formulation of our previous
study,13 so here we only summarize it. The ellipsoids are constructed from the eigenvectors of

Mi j = 1

A

∫
A

x ′
i x

′
j d S(x), (2)

where A is the cell surface and x′ is a surface coordinate measured relative to the cell centroid:
x′ = x − xc. These eigenvectors e1, e2, and e3, which have corresponding eigenvalues λ1 > λ2 > λ3,
can be used to construct a fitted ellipsoid as

x = 2
√

λ1e1 sin ψ cos ϕ + 2
√

λ2e2 cos ψ cos ϕ + 2
√

λ3e3 sin ϕ, (3)

where ψ ∈ [0, π ] and ϕ ∈ [0, 2π ]. These are shown in Figure 3(a). We define tilt angle θ for each
cell as the angle between its shortest axis and the inward directed normal to the tube wall closest
to the cell centroid, as shown in Figure 3(b). Based upon the visualizations, we expect typical θ ,
defined in this way, to be negative. This is almost always true, as seen in Figure 3(c), which shows
the angle probability density function P(θ ) normalized such that

1

2π

∫ π

−π

P(θ ) dθ = 1. (4)

The nearly identical distribution for the several simulation cases plotted in Figure 3(c) confirms
that the magnetic particles, even when subjected to the strongest forces studied, do not significantly
affect red cell orientations.
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FIG. 3. (a) Red cells with their respective fitted ellipsoids. (b) The principal eigenvector e3 associated with the smallest
eigenvalue λ3 is used to quantify the tilt angle of each cell. As shown, both cells have negative tilt angles. (c) The average
distribution of tilt angles for the cases with the magnetic forces as labeled.

B. Force-free particle advection

Without applied magnetic forces, the particles are simply advected and are dispersed by the
apparently chaotic motion of the red cells. Figure 4(a) shows the motion of the particles projected onto
a x–y plane, and Figure 4(b) shows the time history of maximum distance of the particles (measured
to the particle surface) from the tube centerline. We see that particles that reach the cell-free layer
(r � 6 μm) tend to stay there, which suggests that they will, in time, become concentrated near the
vessel wall, as has been observed for platelets.25 This is consistent with recent observations showing
small effective diffusivity near the wall in an experimental study of passive particle transport.11

The x-velocity distribution for particles with centers r (t) =
√

x2(t) + y2(t) ≤ 6 μm, is shown
in Figure 5. Though obviously important for lateral transport, no fluctuation exceeds 10% of the
centerline velocity (ūz(0) = 4.6 mm/s). The statistics are approximately Gaussian, reasonably well
fitted by P(vx ) ∝ exp[−v2

x/2σ 2] with σ = 140 μm/s. The velocity in just the x coordinate direction

x

y

(a)

0 0.05 0.1 0.15 0.20

2

4

6

8

t [s]

r(
t)

[μ
m

]

wall

(b)

FIG. 4. Particles trajectories without magnetic forces: (a) projected onto a x–y plane and (b) maximum instantaneous distance
from the tube centerline r (t) =

√
x2(t) + y2(t).
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the period of the simulation. The symbols ◦ correspond to data accumulated in bins from the simulation data and the line
——— is a Gaussian fit (see text).

was selected over the radial velocity to remove the effect of the mean drift toward the periphery of the
vessel in this transient simulation. However, the radial velocity distribution is almost indistinguish-
able. The corresponding distribution of radial velocity is least-squares fitted with nearly the same
width Gaussian (σ = 138 μm/s) except that its fit exp[−(vr − vo)2/2σ 2] is centered at vo = 32μm/s,
reflecting the relatively slow mean outward drift of the particles. An effective net radial diffusivity
can be deduced from the time it takes, say, half the particles to reach the cell-free layer at r ≈ 6μm.
From Figure 4(b), we see that this corresponds to t ≈ 0.25s, which is consistent with an effective
radial diffusivity of D ≈ 5 × 10−11 m2/s. This is similar to the diffusivities (D ≈ 4 × 10−11 m2/s)
of small beads and platelets recently computed and compared favorably with experiments by Zhao
and Shaqfeh.25

Since these velocity fluctuations also transport the magnetic particles, how they compare with
the induced velocity of any applied magnetic force is also important. We thus define the fluctuation-
velocity analog of � from (1) as

� ′ = magnetic force

Stokes drag for fluctuation velocity
= F

6πμapσ
= VR

σ
. (5)

For the parameters studied here, components of � ′ will range in magnitude from 0 to 6.70, thus
spanning between |� ′| > 1 and |� ′| < 1 regimes where magnetic forces will be, respectively, large
and small compared to the fluctuation velocity drag forces. We can anticipate that � ′ will thus be
an indicator of behavior regime based upon the magnetic force strength.

The therapeutic objective requires that the particles reach the vessel wall. Though interactions
with the red cells also push the particles toward the near-wall cell-free layer, upon reaching it they
persist for long periods at the edge of this layer. As expected for viscous flow, there do not seem to be
any significant hydrodynamic forces causing further wall-ward motion upon entering this cell-free
layer, only a slow drift toward the wall (see Figure 4(b)) as would be expected to arise via the weak
nonlinearity associated with small deformations of nearby blood cells.25 For drug delivery, this
persistence might be beneficial since it inhibits the absorption of particles except where a magnetic
force is applied in a way to accelerate the final transport to the vessel wall. We next consider such a
force.
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FIG. 6. Particle trajectories for increasing �x as labeled. The corresponding �x = 0 case is shown in Figure 4(a).

C. Magnetic forces perpendicular to the flow direction

Figure 6 shows the particle trajectories for x-directed forces that range from �x = 0.006 up to
�x = 0.204. It is clear that the weaker forces are insufficient to resist the diffusional buffeting of
the red cells, which obviously dominates their motion. However, with increasing �x there is a clear
x-direction bias to their trajectory, with the strongest force yielding a fast, and for most particles
monotonic, approach toward the vessel wall. A key difference from the �x = 0 case is that even a
relatively weak force will be significant once the particles reach the near-wall cell-free layer. We see
continued transport toward the wall in all cases.

The corresponding � ′
x are also labeled in Figure 6. For � ′

x > 1, we see a clear and immediate
motion in the +x-direction. For the highest � ′

x , the particles almost all reach the the cell-free region
and wall near y ≈ 0 where the particles were released, indicating that the magnetic forces overwhelm
the lateral dispersion caused by interactions with the red cells. When � ′

x ≈ 1, in Figure 6(c), there
is an obvious trend of magnetic particle motion in the +x direction, but it is wandering and there
is also significant lateral dispersion in the ±y-directions. For still smaller � ′

x , the fluctuations
dominate the magnetic force and the motion looks superficially like that without an applied magnetic
force.

In Figure 7, which shows the distance of the particles from the vessel center, we confirm
that a transition of sorts occurs at � ′

x ≈ 1. For � ′
x > 2, most of the particles move toward the

wall at approximately the velocity predicted for an isolated sphere in a fluid with the plasma
viscosity. Some of the particles are impeded temporarily by interactions with cells, but this is a
small number (only two for the largest �x = 0.2 case). If it were assumed that the particles were
suspended in a homogeneous fluid with the bulk blood viscosity μb, in this strong-force limit many
of the particles would appear to arrive even sooner than expected (Figures 7(d)–7(f)). Most that
show any obvious interactions with the cells are only temporarily delayed, with the result that
their wall arrival time roughly corresponds to that predicted for homogeneous fluid with the blood
viscosity.

For � ′
x � 1, however, the particle interactions with the red cells dominate the transport. Most

particles actually reach the edge of the cell-free layer before they would have in absence of red cells,
as estimated by the free-space velocity prediction, especially if an effective μb were used for the
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FIG. 7. Particle radial location histories for increasing �x as labeled: ——— simulated particles and predictions for s sphere
in unbounded fluid with the plasma viscosity μ· · · · · · and bulk blood viscosity μb – – – – .

viscosity. The magnetic field then moves them toward the wall. Note that lateral dispersions lead
to some of these particles enter the cell-free layer well away from y = 0, as seen, for example,
in Figure 6(c). Thus, even if they were to move at the free-space velocity, they would appear to
approach the wall more slowly because the magnetic forces are not directed toward the closest part
of the vessel wall. The resulting trajectories are seen in Figure 7(c). Even magnetic fields that are
too weak to significantly affect transport in the cell-rich core become important once the particles
reach the cell free layer.

D. Magnetic forces parallel to the flow direction

Though forces perpendicular to the flow are the most intuitive for bringing the particles to the
vessel walls, we should also consider forces with a finite streamwise component since a vascular
system will have a range of vessel orientations. Indeed, forces oriented predominantly perpen-
dicular to the flow are expected to be rare. For a homogeneous fluid, the effect of a streamwise
component would be simple: only if it significantly increases residence time will it then allow a
flow-perpendicular force component to increase transport to the vessel wall. However, for |�| 
 1
this effect will be small, since such small magnetic forces do not significantly affect residence times.
However, we shall see that the particular inhomogeneous environment established by the sheared
red cells amplifies the effect of streamwise oriented forces.

Figure 8 shows the particle r(t) histories for a range of positive and negative �z. The cor-
responding case with � = 0 was shown in Figure 4(b). Forces in the flow direction (�z > 0)
clearly suppress the radial transport of the particles whereas forces counter to the flow (�z < 0)
clearly promote it. This is due to the streamwise asymmetry of the blood cells. As seen in the
visualization (Figure 1) and confirmed quantitatively based upon the orientation of fitted ellipsoids
(Figure 3), the cells flow with orientation such that their leading edge is tilted toward the center of
the vessel. As shown schematically in Figure 9, a particle that is decelerated relative to the local
flow will encounter the typical cell in a way that directs it toward the vessel wall. In contrast, a
particle that is accelerated relative to the flow has the opposite tendency. In short, the cells act as
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FIG. 8. Particle radial location histories for �x = 0 and the �z as labeled.

Fz < 0

Fz > 0

Slowed
Accel.

Flow

FIG. 9. The asymmetry of the cells directs the particles toward or away from the wall depending upon the sense of the force
relative to the flow direction.

0 0.01 0.02 0.03 0.04
0

50

100

150

0 0.05 0.1 0.150

100

200

300

400

500

600

∼ 8µm

t [s]

z
[μ

m
]

Ψz = −0.2
Ψz = 0.0Ψz = 0.2

FIG. 10. Travel distance for � = (0, 0, 0.2), (0, 0, 0), and (0, 0, −0.2) cases as labeled.



051904-11 J. B. Freund and B. Shapiro Phys. Fluids 24, 051904 (2012)

a zero-Reynolds number analog of turning vanes, greatly enhancing any effect of the streamwise
force.

For the mechanism suggested in Figure 9, we expect to see a significant effect when the force
has moved the particle approximately a cell length relative to a nearby flowing cell. This is quantified
in Figure 10. The relative streamwise motion caused by streamwise versus counter-stream force is
approximately cell scale (∼8 μm) after about time 0.02s. This can be anticipated based upon the �z

= −0.204 case. In a homogeneous fluid of plasma viscosity, the particle would move about 8 μm
relative to the plasma in about 0.05s. This corresponds to the margination time for �z = −0.204 seen
in Figure 8(f), which precipitates a significant divergence in the trajectories (inset of Figure 10) as
particles in the �z = −0.204 case arrive in the slow-flowing fluid near the vessel wall (Figure 8(f)).

IV. SUMMARY AND CONCLUSIONS

In summary, we see significant influence of the cellular character of the blood upon the transport
of the magnetic particles. Without any forces applied, the particles have root-mean-square velocity
fluctuations perpendicular to the mean that are nearly 5% of the mean flow 〈v2

x 〉1/2 = 0.045U
= 140 μm/s. In flows with relatively weak cross-stream magnetic forces, particularly those with
� ′

x � 1, these fluctuations accelerate the particle transport toward the wall, which could lead to
contact more quickly than a free-space Stokes-law would predict. Even relatively weak forces can
be significant in the near-wall cell-free layer, which the particles must traverse to reach the wall.
Upon entering this region, there are no longer strong interactions with the cells to promote wall-ward
dispersion. Brownian motion would also have more time to act in this region, becoming significant
for any particles as they near the vessel, especially for those smaller than the ab = 0.282 μm
radius considered here. This might be particularly important since preferential margination would
necessarily cease in the small particle limit, where they become passive zero-dimensional flow
tracers. Preferential margination as we see through interaction with red cells depends upon their
finite size. For stronger forces (� ′

x � 1), interactions with the cells inhibit contact with the wall but
does not slow transport by more than a factor of two for most particles.

The effect of streamwise-directed magnetic fields was surprisingly significant. The asymmetric
orientation of the cells caused them to act similar to turning vanes, directing the particles toward the
vessel center for magnetic forces in the flow direction and toward the vessel wall for forces counter
to the flow direction. This is a much more significant effect than might be anticipated based upon
the simple change in residence time: it occurs on the time it takes for a particle to pass or be passed
by a red cell in the flow. This has not apparently been observed yet in blood cell experiments, but it
is a potentially useful means of altering transport. This effect is expected to diminish and eventually
disappear in the smallest vessels, where the cells flow in single file in a nearly axisymmetric shape.
Also, for significantly larger vessels, cells further from the vessels walls are not expected to flow with
so consistent a vane-like orientation. Vessel-size dependence is thus worthy of further investigation.
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