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Abstract: A nanoparticle delivery system termed dynamic magnetic shift (DMS) has the 

potential to more effectively treat metastatic cancer by equilibrating therapeutic magnetic 

nanoparticles throughout tumors. To evaluate the feasibility of DMS, histological liver sections 

from autopsy cases of women who died from breast neoplasms were studied to measure vessel 

number, size, and spatial distribution in both metastatic tumors and normal tissue. Consistent 

with prior studies, normal tissue had a higher vascular density with a vessel-to-nuclei ratio of 

0.48 ± 0.14 (n = 1000), whereas tumor tissue had a ratio of 0.13 ± 0.07 (n = 1000). For tumors, 

distances from cells to their nearest blood vessel were larger (average 43.8 µm, maximum 

287 µm, n ≈ 5500) than normal cells (average 5.3 µm, maximum 67.8 µm, n ≈ 5500), implying 

that systemically delivered nanoparticles diffusing from vessels into surrounding tissue would 

preferentially dose healthy instead of cancerous cells. Numerical simulations of magnetically 

driven particle transport based on the autopsy data indicate that DMS would correct the problem 

by increasing nanoparticle levels in hypovascular regions of metastases to that of normal tissue, 

elevating the time-averaged concentration delivered to the tumor for magnetic actuation versus 

diffusion alone by 1.86-fold, and increasing the maximum concentration over time by 1.89-fold. 

Thus, DMS may prove useful in facilitating therapeutic nanoparticles to reach poorly vascular-

ized regions of metastatic tumors that are not accessed by diffusion alone.
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Introduction
Breast cancer is the second leading cause of death in American women.1 The most 

important factor that determines survival in these patients is tumor stage, but more 

specifically the presence of metastases. The 5-year relative survival rate declines 

from 98% in cases with localized primary lesions to 23% in cases with distant stage 

with metastasis in organs.1 Treatment of breast cancer includes local strategies such 

as surgery and radiation, as well as the systemic use of chemotherapeutic agents. 

However, successful treatment of metastases is a daunting undertaking due to the 

numerous challenges involved.2 Identification of efficacious antitumor agents, tumor 

heterogeneity, evolving drug resistance, and host toxicity are among the difficulties 

involved in developing therapies that reduce morbidity and mortality in patients with 

advanced disease.

The three-dimensional tumor microenvironment introduces an additional level 

of complexity, as the rapid and uncontrolled growth of tumor cells can result in a 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
2907

O R I G I N A L  R E S E A R C H

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/IJN.S23724

www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/IJN.S23724


International Journal of Nanomedicine 2011:6

disorganized and only partially functional biological milieu, 

an environment that favors tumor growth over normal 

physiological processes. One outcome of this process is 

an abnormal vascular system.3 Unlike the well-structured 

series of small vessels that create a fine meshwork of cap-

illaries in normal tissues to deliver oxygen and nutrients 

within a diffusion-limited distance of cells, tumors often 

exhibit a complex and disordered blood supply, resulting 

in diminished perfusion to some or all parts of the tumor 

microenvironment and reduced delivery of blood-borne 

components, including systemically administered thera-

peutic agents.4–9

The full complement of reasons for poor chemothera-

peutic efficacy in metastases is not understood;4,6 however, 

to improve drug delivery, functionalized nanoparticles are 

being developed to target cancers and increase local drug 

concentrations, cellular uptake, and clinical effectiveness.10–18 

Unlike small drug molecules that equilibrate quickly through 

tissue space by diffusion alone,19,20 larger functionalized 

nanoparticles (including targeting antibodies,10–12,14,15 

 environmental reactive drugs,21 or imaging reagents22,23) are 

unable to diffuse as easily.19,20 Several in vivo studies have 

shown that with targeted carriers, even if the cellular uptake is 

increased, the tumor drug concentration remains unchanged 

compared with untargeted carriers.11–13 This poor penetra-

tion can reduce the efficacy of large nanoparticle carriers, 

particularly within poorly vascularized cellular regions in 

the tumor environment.

In order to provide adequate nanoparticle concentrations 

to breast and other metastatic tumors, we are evaluating a 

new method of normalizing nanotherapy30–37 (see Figure 1) 

that is designed to achieve two important goals: (1) increase 

nanoparticle levels in poorly vascularized tumors or tumor 

subregions by equalizing the concentration between tumor 

and normal tissues, and (2) improve tumor nanoparticle levels 

simultaneously in all tumor foci across a given anatomical 

region, without the need for imaging-based, positional infor-

mation of lesions. To accomplish these objectives, magnetic 

nanoparticles would be given systemically and allowed to 

distribute throughout the body. A magnetic force would then 

be applied in one direction over a specified anatomical zone 

of the body to promote movement of the therapeutic particles 

into the tumor space from adjacent, well-vascularized normal 

tissue (an effective external nanoparticle reservoir) and also 

from subregions within the tumor that contain high levels of 

nanoparticles (eg, internal vessels). The externally applied 

magnetic forces would overcome diffusion limits by physi-

cally displacing ferromagnetic drug carriers across nano- or 

micrometer distances (Figure 2). This displacement can be 

driven in one direction only, but our studies show that it is 

advantageous to repeat the process in at least two directions 

to more uniformly distribute the nanoparticles due to the 

complex geometries of vessels within tumor foci. Because 

the nanoparticles have a finite circulation time in vivo, there 

is a balance between magnetically actuating for as long 

as possible in one direction versus successively applying 
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Figure 1 A map of when dynamic magnetic shift (DMS) is predicted to be advantageous over diffusion alone for poorly perfused liver metastases (for a sample 0.5 mm 
diameter tumor, therapeutic particles are assumed to have a 45-minute in vivo residence time). For two common types of tissue models, a Renkin Pore model19,20,24 or a 
Fiber-Matrix model,19,20,25 the coloring shows when DMS treatment will improve drug delivery to the tumor. Here, “High diffusion” refers to the region where diffusion alone 
should suffice. It is the region where particle diffusion is predicted to create a concentration of therapy in all tumor cells that is $85% of the concentration of therapy in the 
bloodstream. “Some advantage” (yellow) and “Most advantageous” (red) is where diffusion will not suffice and DMS has the potential to improve therapy concentration to 
all cells in the tumor by .17% and .100%, respectively, compared with diffusion alone. Thus, DMS will be advantageous for mid-range 10–500 nm particle sizes, when the 
particles are big enough that diffusion alone is no longer effective but small enough that they can be magnetically moved through tissue. Particles of this size include heat shock 
protein cages (,16 nm),26 polymeric micelles (,50 nm),27 colloidal suspensions of albumin-Taxol (Abraxane, 130 nm),28 and functionalized carbon nanotubes (0.1–4 µm).29
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magnetic forces in multiple directions to better redistribute 

drugs into and throughout metastatic tumors. Our finding is 

that two directions is a practical compromise between shift 

distance and number of shift directions, and we examine 

that case here.

To evaluate the histological and vascular features of 

metastatic foci in human subjects and their implications for 

magnetic drug delivery, a series of autopsy cases from women 

who died from metastatic breast cancer were  analyzed. 

Blood vessel density and geographic distribution were quan-

titatively measured and these data used for mathematical 

simulations of the distribution of magnetic particles within 

tumors with and without magnetic actuation, to assess the 

feasibility of dynamic magnetic shift (DMS) and also to 

describe and understand the critical elements that affect the 

process. In brief, strong magnets of a carefully selected size 

(20 × 40 cm) that create substantial magnetic gradients inside 

the body (magnetic fields fall off with distance creating a spa-

tial gradient) were evaluated; the magnetic fields, gradients, 

and forces were computed by standard methods;32,38–41 the 

most realistic available parameters were used for human tis-

sue resistance to particle motion;19,20,24 and DMS parameters 

(strength and timing for a two-direction shift) were varied to 

evaluate different treatment regimens. Finally, because one 

of the most common sites for metastasis of breast cancer is 

the liver and there is clinical evidence suggesting that treat-

ment of metastatic hepatic lesions can lead to improvement 

in patient outcome, we focused our attention on hepatic 

metastasis.2,42–44

Materials and methods
Evaluation of autopsy reports  
and specimen selection
Autopsy reports of patients with metastatic breast cancer as 

the underlying cause of death at the National Institutes of 

Health (NIH) Clinical Center between 1991 and 2007 were 

evaluated for the study. The reports included a complete 

clinical history and autopsy findings. Areas of metastatic 

spread were identified for each patient to reveal organs 

most frequently affected by metastases, and chemothera-

peutic treatment history and cause of death were compiled. 

A pathologist based the block selection on two criteria: the 

presence of at least one metastasis, and the presence of adja-

cent normal tissue for comparison. After histopathological 

review, ten cases were selected for the study.

Immunohistochemistry
Immunohistochemical staining of formalin-f ixed and 

paraffin-embedded liver sections for CD31 expression was 

performed with a standard immunohistochemistry protocol 

using the Dako EnVision+ System-HRP kit (Dako North 

America, Inc, Carpinteria, CA). After deparaffinizing 

each 5 µm-thick histological section, antigen retrieval was 

performed using 1X citrate buffer with 0.05% Tween 20 

(Invitrogen Corporation, Carlsbad, CA) for 30 minutes in a 

steamer, then cooled slowly to room temperature.  Peroxidase 

block was applied for 30 minutes at room temperature. After 

rinsing with 1X phosphate buffered saline, tissue sections 
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Figure 2 Schematic illustration of magnetic left-then-right shift option to increase nanoparticle levels into and throughout liver metastatic tumor foci. Left and right panels: 
appropriately chosen (strong and correctly sized) magnets can create sufficient magnetic gradients on therapeutic magnetic nanoparticles to displace them from dense 
distributions in normal tissue into adjacent poorly vascularized tumor regions. In this example, magnetic shift is shown in just two successive directions, but the process can 
be repeated in multiple spatial planes. Middle panel: computer simulations of the resulting therapeutic particle distributions in a 1 mm-wide tissue region using blood vessel 
geometry taken from autopsy data (gray markings). The color gradient shows the resulting nanoparticle concentration at each tissue location (red is high, white is low). 
Magnetic actuation increases nanoparticle concentration in the tumor area (marked by the black circle, also clearly visible by a lack of blood vessels) at 30, 60, 120, and 
180 minutes after systemic injection.
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were incubated overnight at 4°C with ready-to-use  anti-CD31 

primary mouse monoclonal antibody (Dako #IS610) and 

then incubated with mouse antimouse secondary anti-

body conjugated to peroxidase for 1 hour (Dako). The 

DAB + substrate-chromogen solution (Dako) was applied 

for 15 minutes; after rinsing in ddH
2
O, the samples were 

submerged in DAB Enhancer (Invitrogen) for 30 minutes. 

Sections were counterstained with hematoxylin, dehydrated, 

and coverslipped. Negative controls were established by 

replacing the primary antibody with antibody diluent, and 

no detectable staining was evident.

Image analysis (Aperio, ImagePro, Matlab)
After CD31 immunohistochemistry and hematoxylin coun-

terstaining, we acquired whole-section images with the 

Scanscope CS system (Aperio Technologies, Inc, Vista, CA) 

from the ten cases. Within each image, ten areas of normal 

and ten of tumor were chosen arbitrarily in 1.2 × 0.75 mm 

rectangles, totaling 200 images. We counted the number of 

nuclei (hematoxylin-stained; blue) and the number of blood 

vessels (CD31-positive cells; brown) using the Image-Pro 

system (Media Cybernetics) and Manual Color Selection. 

The appropriate colors for nuclei and vessels were chosen 

separately for each image to maximize the software’s rec-

ognition for each structure and to minimize background. 

For tumor images, Watershed was applied to separate the 

clustered nuclei. Matlab was used to compute and plot the dis-

tance from each tissue location to the nearest blood vessel.

Parameters for nanoparticle diffusion and 
magnetic transport through human tissue
At present, nanoparticle diffusivity and tissue resistance are 

not well known or characterized, especially within metastatic 

tumors in humans.19,20 However, there are several models that 

can be used to predict the relative movement of nanoparticles 

through tissue based on the size of the particles and relevant 

tissue parameters. Two traditional models (the Renkin Pore 

model19,20,24 and the Fiber-Matrix model19,20,25) were exam-

ined to determine the range of both diffusivity and tissue 

resistance.

The classical method of describing particle motion 

through different media is by a reduced diffusion coefficient 

that scales both the blood diffusion coefficient19,20,41 and 

the magnetic drift coefficient (by assuming Einstein’s 

relation).20,41 This reduced coefficient usually depends upon 

particle size (it decreases as the size increases) and the prop-

erties of the tissue (denser tissues increase particle motion 

resistance). Conversely, the magnetic force increases with 

particle size, it simply scales with particle volume.32,41,45 Thus, 

there is an optimal particle size for different tissue properties. 

The particles should be big enough so that the magnetic force 

is substantial but small enough to effectively move through 

the tissue (Figure 3).

Using Figure 3 and assuming a physiologically worst-case 

scenario for DMS of a very diffusive metastatic tumor (where 

the diffusion of nanoparticles is high, reducing the potential 

beneficial impact of the magnetic actuation, see Figure 1), 
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a fiber concentration C
F
 ≈ 0.3% using the Fiber-Matrix 

model19,20 was chosen, which led to an optimal particle 

diameter of 60 nm and a maximum particle magnetic drift 

velocity of ≈0.09 µm/s. The associated tissue diffusion 

coefficient, via the particle’s size and Einstein’s relation, is 

D ≈ 9 × 10–13 m2/s. These parameters were used to evaluate 

the DMS methodology.

Magnetic drug transport simulations 
(Comsol Multiphysics)
To examine the effect that low vascular density has upon 

magnetic targeting procedures, simulations were constructed 

using the histology of a representative small metastatic tumor 

(diameter ≈ 0.5 mm) and the surrounding normal liver paren-

chyma. Using finite element modeling software, the behavior 

of magnetic nanoparticles was examined with and without the 

application of magnetic actuation (Comsol Multiphysics).46 

All magnetic fields, gradients, resulting forces, and particle 

motions were computed from physical first principles,32,38,39,41,45 

using the most realistic available parameters for particle dif-

fusivity and resistance to motion in human tissue.19,20

The evolution of particle distributions in media was 

described by partial differential equations. Here, for diffu-

sion and magnetic transport in tissue, the appropriate partial 

differential equation with boundary and initial conditions 

is shown in Equations (1) and (2)47,48 (details provided in 

Supplementary information).
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 (1)

 C (x,y,t)
Vessels

 = C
0
 (x, y)e-λt, λ ≡ ln(2)/t

half-life
 (2)

This type of formulation is standard, and the properties 

of tissue (D, 


Vmagnetic
, t

half-life
, C

0
) were chosen to match the 

properties of drug-coated 60 nm-diameter magnetic particles 

in human tissue.19,20,38,41,49 The decay constant, λ, defines how 

the particle concentration in blood is related to the nanocar-

rier half-life, t
half-life

. A Fiber-Matrix model with a 1 nm-radius 

fiber volume concentration of C
F
 = 0.3%19,20,25 was chosen to 

evaluate the worst-case situation for DMS where the diffusion 

coefficient of the particles is high, thus reducing the benefit 

of DMS (for this C
F
 = 0.3%, the reduced diffusion coef-

ficient of the Fiber-Matrix model is D
T
 ≈ 0.15).19,20,25,41 The 

magnetic field and magnetic gradient around a 20 × 40 cm 

magnet (2.5 T remnant magnetization) was solved using 

COMSOL,39,41 which gave the magnetic force at a depth 

of ≈11 cm in the body as F
mag

 ≈ 0.34 fN. Comparing this force 

with tissue resistance, F
resistance

 ≈ (1/D
T
) 6 π a η V

magnetic
, where 

a is the particle radius, η is the fluid viscosity, and V
magnetic

 

is the speed at which nanoparticles are transported through 

the region of tissue by the applied magnetic force, yielded a 

particle magnetic drift velocity of V
magnetic

 ≈ 0.09 µm/s.38,41

Three treatment scenarios were considered: (a) no applied 

magnetic forces (for a treatment duration of t = 3 hours), (b) 

a constant unidirectional west magnetic force (t = 3 hours), 

and (c) a sequence of magnetic forces chosen by intuition that 

begins with no magnetic force (for t = 45 minutes) followed 

by a unidirectional east force (for t = 1.5 hours), which then 

switches to a unidirectional west force (for t = 45 minutes). 

Option c was chosen to test the effects of switching magnetic 

force directions on both the average and maximum-over-time 

nanoparticle concentration achieved in the tumor region to 

see whether it could be improved over the results of option b. 

Subsequently, we carried out a comprehensive search over 

magnetic force duration and number of pull directions (single 

or bidirectional pull) to go beyond option c and to find optimal 

DMS treatment parameters for a 1.5-hour treatment.

Results
Overall clinical picture
Autopsies from 18 women with metastatic breast cancer 

who died at the NIH Clinical Center were initially evaluated. 

The liver (89%) and the lungs (89%) were the extra-skeletal 

organs most commonly affected in this cohort of patients, 

although a majority of the women also had widespread 

systemic metastases. The most common causes of death 

were overall tumor burden and respiratory compromise, often 

associated with infections that were secondary to therapy 

and immune suppression. The chemotherapeutic treatment 

history in the patients varied; however, in all cases the drugs 

received were standard regimens. Grossly, the metastatic 

tumor foci appeared as firm, white nodules, in contrast to 

the adjacent, dusky, liver parenchyma (Figure 4).

Vessel measurements: normal  
liver and metastases
Ten autopsies were chosen for vessel analysis based on the 

quality of CD31 immunostaining. All ten patients had liver 

metastases, ranging from micrometastases that were only a few 

millimeters in diameter to grossly visible lesions that were a 

centimeter or more across. At the microscopic level the metas-

tases comprised sheets of irregularly shaped tumor cells with 

pleomorphic nuclei. Foci of chronic inflammation, necrosis, and 

microhemorrhage were variably observed in the tumors.
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Figure 4 Photograph of metastatic breast cancer in liver. The lesions appear grossly 
as firm, white nodules, consistent with a host desmoplastic response and poor 
vascularization. 
Notes: The image is representative of the pathological descriptions in the autopsy 
cases in the study but is not an actual image from one of the cases. Photo provided 
courtesy of Drs Hanne Jensen and Robert D Cardiff, Center for Comparative 
Medicine, University of California, Davis.
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Figure 5 Photomicrographs of vessel staining in three cases of metastatic breast 
cancer in liver. Images on the left are immunostained histological sections. On 
the right are the same sections visualized in black and white to highlight the 
CD31-stained vasculature. Panels A–F are from normal liver and panels G–L are 
from matched tumors. At low power the normal sections show a fine meshwork 
of capillaries. In contrast, tumors exhibit vessels that are generally larger in size and 
fewer in number.

Normal liver in the patients contained a fine meshwork 

of small vessels and capillaries interspersed throughout the 

parenchyma, an architectural pattern consistent with an 

even distribution of blood flow and diffusion-based deliv-

ery of oxygen and nutrients to hepatocytes and associated 

support cells. In contrast, the tumor vessels were generally 

larger in diameter but fewer in number than in the adjacent 

normal liver, with a more random distribution and a greater 

vessel-to-vessel spatial separation. This difference in tumor 

vasculature is evident in the low-power histological views 

shown in Figure 5 and was observed in the metastases from 

nine of the ten patients analyzed.

To quantitatively assess the vasculature patterns of both 

normal tissue and tumor, 20 arbitrary histological regions 

were chosen for each case: ten that contained normal liver 

(green rectangles) and ten with tumor (red rectangles). As 

an example, a low-power microscopic view of one case 

and geographic regions selected for analysis is shown in 

Figure 6A. Overall, the measurements revealed that tumors 

contained fewer vessels and had more vascular  heterogeneity 

than normal tissue, consistent with the visual observations 

seen in Figure 5. Except for outlier case A98-28 (the only 

lobular breast cancer case in the series, see Discussion 

 section), all tumor cases had fewer vessels than normal tissue 

as measured using vessel count per cell number (Figure 6B) 

or using vessel count per area (Figure 6C).

We next assessed the tumor microenvironment in terms 

of regions with the lowest number of vessels. In other words, 

we purposefully looked for and measured subregions of 

tumors with the lowest vascular density, then compared 

these subregions against normal tissue of the same patient 

by computing the distance to the nearest blood vessel for 

every location within the tissue image. As seen in the panels 

across the top of Figure 7, in a normal region the average 

of the distance from each cell to its nearest blood vessel is 

5.3 ± 2.7 µm (the maximum is 67.8 µm; n ≈ 5500). In contrast, 

in the selected tumor region, the average was observed to be 

43.8 ± 6.9 µm (the maximum was 287 µm; n ≈ 5500). These 

results indicate that in addition to a lower average vascular 

density than normal tissue, there exist specific subregions 
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Figure 7 Computation of the distance of normal liver cells (panels across top) or tumor cells (bottom) to their nearest blood vessel. The black and white images indicate tissue 
(black) and vessel (white) locations. Each normal and tumor region was selected for analysis based on the fewest number of vessels observed at low magnification. The three-
dimensional relief graphs show the distance in microns to the nearest blood vessel for a given tissue location. As the graphs increase in height, that tissue location is further 
from its nearest blood vessel. In all examples, the tumor cases have cells located further away from nearest blood vessels (indicated by larger mean and maximum values).
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of tumors that are far away from all vessels, regions that 

are likely poorly perfused and difficult for systematically 

administered particles to access.

Magnetic drug transport simulations
To evaluate the utility of externally applied magnetic forces in 

equilibrating nanoparticle levels in tumors, a series of simula-

tions of Equations (1) and (2) were performed. The rate of 

nanoparticle extravasation through capillary walls, the decay 

constant λ in Equation (2), was inferred from the measured 

half-life (t
half-life

) of nanoparticles in patients in the clinical trials 

of Lubbe et al.50,51 (For additional details on the simulations 

and mathematics, see Supplementary information.)

Figure 8 and Table 1 compare the time-progressed 

behavior of the magnetic nanoparticles for the three treat-

ment scenarios. Figure 8(A) represents the change in particle 

concentration with no applied magnetic forces over 3 hours 

for a tissue sample that includes a small metastasis.  Locations 

with high vascular densities (normal tissue) produced 

regions with high particle concentrations, whereas regions 

with lower vascular densities (tumor) experienced lower 

concentrations. In Figure 8(B), a constant west magnetic 

force was applied for 3 hours. The increase in particle con-

centration in the tumor is especially evident at the end of the 

second hour (at 120 minutes). Single direction shift yielded a 

15.8% (compared with in blood) time-averaged nanoparticle 

>0.36
10

minutes

30
minutes

45
minutes

60
minutes
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minutes

180
minutes

0.27

0.18

0.09

0

0.4 mm

A B C

Tumor

Figure 8 Time progression of nanoparticle concentration for the three treatments. The panels across the top were from a histological image of normal liver containing 
a small metastasis (marked by the circle). (A) Nanoparticle concentration with no magnetic forces and only diffusive effects. The tumor region had a low nanoparticle 
concentration even after 180 minutes. (B) Nanoparticle concentration with a constantly applied magnetic force to the left (west). The nanoparticles were displaced to the 
left, increasing the particle concentration in the tumor. (C) Nanoparticle concentration with an alternating magnetic force first to the right (east) and then to the left (west). 
Nanoparticles from surrounding normal tissue were effectively brought into the tumor region by dynamic magnetic shift.
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Table 1 Time-averaged and time-maximum particle concentrations in tumor versus surrounding normal tissue

Case Time averaged Time maximum

Normal Tumor T:N Fold increase Normal Tumor T:N Fold increase

a. Diffusion only 20.4% ± 3.7%  9.9% ± 4.5% 0.49 28.9% ± 4.3% 15.8% ± 5.2% 0.55
b. Left shift 19.6% ± 3.2% 15.8% ± 3.5% 0.81 1.65 27.4% ± 4.1% 27.4% ± 2.9% 1.00 1.81
c. Shift two directions 19.7% ± 2.8% 18.0% ± 2.6% 0.91 1.86 29.0% ± 3.3% 30.1% ± 2.4% 1.04 1.89

Notes: The time-averaged “normal” and “tumor” values for the three treatment cases were computed by taking the average concentration over time within each tissue 
region (normal or tumor). Likewise, the time-maximum “normal” and “tumor” values were computed by taking the maximum over time at each location and then spatially 
averaging that value across the normal and tumor regions, respectively. Time-averaged ratio T:N = tumor average/normal average, and the fold increase = T:N average 
(left magnet or shift two directions)/T:N average (diffusion only); likewise, the time-maximum ratio T:N = tumor max/normal max, and the fold increase = T:N max 
(left magnet or shift two directions)/T:N max (diffusion only). The standard deviations are shown next to each percentage to quantify the spatial variance around the time-
averaged or time-maximum region concentrations. T:N values close to unity correspond to effective therapy normalization between tumor and normal tissue; fold increases 
quantify the benefit of dynamic magnetic shift.

concentration in the tumor, instead of the prior 9.9% value 

(a 1.6-fold improvement), whereas time-averaged particle 

concentration in the normal tissue remained almost the same 

as for diffusion only (19.6% instead of 20.4%). Thus, mag-

netic shift in just one direction partially renormalized particle 

concentration from normal to tumor tissue. Figure 8(C) simu-

lated an alternating bidirectional magnetic treatment. This 

simulation began with no magnetic forces (for 45 minutes) 

then a unidirectional east magnetic force (for 1.5 hours), 

which then switched to a unidirectional west force (for 

45 minutes). Alternating the direction of magnetic forces 

more effectively normalized particle concentration between 

normal and tumor tissue as the time-averaged concentration 

of particles in the tumor was 18.0%, which is close to the 

19.7% concentration in normal tissue, a 1.99-fold improve-

ment compared with no magnetic actuation. The time-

averaged metric is appropriate for time-dependent therapies 

or phase-specific therapies52 like paclitaxel53 and topotecan,54 

where it is important to ensure that cancer cells experience a 

higher dosage of therapy over a long time window to continue 

treating them until they enter the correct phase of their cell 

cycle. For phase-nonspecific therapies or dose-dependent 

drugs52 like gemcitabine55 and carboplatin,56 it would suf-

fice to increase the dose in cancer cells for just a short time, 

because the drug efficacy is not dependent upon the cancer’s 

cell cycle phase. In this phase-nonspecific case, it is more 

appropriate to consider the time-maximum  concentration 

at each tissue location. If such a time-maximum metric is 

considered, then even a single direction shift is sufficient to 

normalize the maximum-over-time nanoparticle concentra-

tion from normal to tumor regions (see Table 1).

Figure 9 plots the results from the simulations, showing 

the average and maximum nanoparticle concentration over 

time in the tissue for three scenarios: case (a) no applied 

0
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>0.30
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>0.30
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half-life
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Figure 9 Visualization of the time-averaged (for slower-acting therapies) and time-maximum (for fast-acting therapies) concentration of therapy in normal and tumor tissue 
for the three cases from Figure 8. The top shows the time-averaged nanoparticle concentrations achieved across the tissue section over the 3-hour treatment window using: 
(A) diffusion only, (B) a left magnetic pull only, and (C) a two-directional magnetic pull. The tumor in the center of the image receives both significantly higher average and 
time-maximal nanoparticle levels when dynamic magnetic shift is applied.
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magnetic forces (diffusion only), case (b) west-only  magnetic 

force, and case (c) a sequence of alternating magnetic forces 

(east then west). In case (a), diffusion only with no mag-

netic forces applied, both the time-averaged and the time-

 maximum nanoparticle concentration in the tumor region 

was half what it was in the normal tissue (Ave
[Normal]a

 = 20.4%, 

Ave
[Tumor]a

 = 9.9%; Max
[Normal]a

 = 28.9%, Max
[Tumor]a

 = 15.8%) 

(Figure 6A). In case (b), a constant unidirectional (west) 

magnetic force improved the maximum nanoparticle 

concentration over time significantly in the tumor, but the 

average over time increased only moderately compared 

with the surrounding normal tissue (Ave
[Normal]b

 = 19.6%, 

Ave
[Tumor]b

 = 15.8%; Max
[Normal]b = 27.4%, Max

[Tumor]b
 = 27.4%) 

(Figure 6B). Finally, case (c), a bidirectional sequence of 

magnetic forces (east then west), was shown to be the most 

effective and improved both the average and maximum 

tumor nanoparticle concentrations relative to normal tissue 

(Ave
[Normal]c

 = 19.7%, Ave
[Tumor]c

 = 18.0%; Max
[Normal]c

 = 29.0%, 

Max
[Tumor]c

 = 30.1% in tumor) (Figure 6C). Overall, case (c) 

increased the Ave
[Tumor]

 ratio for magnetic actuation versus 

diffusion by 1.86-fold, and increased the Max
[Tumor]

 ratio by 

1.89-fold. In essence, magnetic shift was able to normalize 

the concentration of nanoparticles between normal and tumor 

cells, both according to the time-averaged (for slow-acting 

therapies) and time-maximum (for fast-acting therapies) 

metrics. (Further details on these simulations are provided 

in Supplementary information.)

The cases in Table 1 show that DMS can normalize 

nanoparticle concentrations across tumors by effectively 

transporting particles from well-vascularized normal tissue 

to poorly vascularized tumor regions. In the example in 

Table 1, the bidirectional mode timing was chosen based on 

intuition. It was thought beneficial to wait for some time to 

allow nanoparticles to first accumulate around vessels, and 

then to pull in the two different directions. To improve on 

case (c), based on the collected autopsy data, we sought to 

determine the best DMS parameters by optimizing the timing 

and direction of the applied magnetic force.

Timing optimization proceeded by defining a therapy 

normalization metric, by considering a cohort of tissue slices 

that included a metastatic tumor surrounded by normal tissue, 

and then by varying parameters and optimizing the metric 

to find the most effective DMS timing parameters. Because 

our goal was to normalize particle distribution across the 

tissue (we wanted to avoid the situation where nanoparticles 

are present in normal tissue but are absent from the tumors), 

the chosen metric had to include a notion of concentration 

uniformity. We also wanted to continue to consider both 

slow-acting and  fast-acting therapies, for which, respectively, 

time-averaged and time-maximum particle concentrations are 

more  appropriate. Thus, we chose to consider the following 

two metrics:

J
spatial average of the time averaged concentration

spatial va
avg =

rriance of the time averaged concentration

avg C

std C

avg time

a
=

( )

(

-

vvg time- )
  

  

J
spatial average of the time maximum concentration

spatial var
max =

iiance of the time maximum concentration

avg C

std C

time

=
( )

(

max

max

-

--time )
 

 
(3)

The numerator was simply chosen to be the spatial aver-

age of the nanoparticle concentration across the entire tissue, 

for either the time averaged or time maximum. However, the 

denominator of the metrics penalizes high spatial variance 

across tissue. If the spatial variance is high (eg, the tumor 

has regions of both high and low particle concentration, an 

undesired situation because some tumor regions remain 

untreated), then the denominator is high and the metric is 

low. The numerator and denominator together try to ensure 

a nonzero and uniform concentration of therapy across the 

entire tissue, which is the normalization that DMS is trying 

to achieve. In particular, if DMS parameters can be chosen 

to create a completely uniform nanoparticle concentration, 

then this metric will reach infinity (its highest possible 

value). Without DMS, the therapy concentration is high in 

well-vascularized normal tissue but low in poorly perfused 

tumors (Figures 8A and 9A).

For DMS optimizations, we considered a small cohort 

of four tissue slices that included microtumors. Two DMS 

parameters were chosen: the duration of the first pull and 

the duration of the second pull. Because the treatment time 

was kept constant at 1.5 hours, this also defined the waiting 

period at the start by t
wait

 = 1.5 hours - t
first-pull

 - t
second-pull

. Each 

of the two pull durations was varied across 25 values, for a 

total of 625 simulations per tissue slice and an overall total of 

2500 simulations. It took 4 days to complete the simulations 

on a Core i7 2.6 GHz computer running Windows 7 with 6 

GB of RAM. Figure 10 shows the fold increases in the two 

metrics J avg and J max versus the diffusion only case.

Figure 10 shows the four optimal situations as indicated 

by the blue diamonds. To increase the degree of normaliza-

tion for slow-acting therapies (time-averaged cases, Jtime-avg), 

it was best to allow the nanoparticles to diffuse a small 
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Figure 10 The degree of nanoparticle normalization fold increase over diffusion alone as a function of two dynamic magnetic shift parameters (pull left duration and pull right 
duration). For each tissue slice, the average over time for slow-acting therapies (left panel) or maximum over time for fast-acting therapies (right panel) was considered. Then, 
the degree of nanoparticle normalization, Jtime-avg and Jtime-max, was calculated using the formulae of Equation (3). The fold increase of the degree of normalization versus diffusion 
alone was plotted. High J values corresponded to high average concentrations and low spatial variances in the particle concentrations. Hence, the highest J value would be for 
a uniform high concentration. Low J values corresponded to low concentrations or high spatial variances that would correspond to hot and cold spots in the tissue and are the 
opposite of what dynamic magnetic shift is trying to achieve. The shift parameters are shown with the first pull duration and direction on the horizontal axis, and the second 
pull duration on the vertical axis. The first pull was either to the west (W) or east (E) for a fraction of the total time (hence, it is shown from -1 to 1). The second pull was 
always in the opposite direction to the first and was similarly a fraction of the total time. Thus, the location (+0.6, -0.2) corresponded to 20% (18 minutes) initial waiting time, 
followed by a 60% (54 minutes) pull to the east, then a final 20% (18 minutes) pull to the west. In this representation, pure diffusion (no pulling) corresponded to the vertical 
axis centered at “D” for diffusion only. For any pair where magnetic actuation was not applied for the full duration (anywhere within the interior of the triangles), diffusion 
occurs first during the initial waiting period. The optimal shift parameters are marked by the four blue stars. The found optima are different for phase-specific (time-averaged 
metric) and phase-nonspecific (time-maximum metric) therapies.

amount from the vessels and then shift in one direction 

for ≈40% of the time, and then shift in the opposite direction 

for the remainder of the time (≈60%). This corresponded 

to shifting in one direction until just before the half-life of 

the nanoparticle is reached (at time 0.5). Neglecting small 

statistical variations that remained because we analyzed 

only four tissue samples (due to computing constraints), 

it made no difference whether one shifts left or right first. 

In contrast, in order to increase the degree of normalization 

for fast-acting therapies (time-maximum cases, Jtime-max), it 

was best to shift the nanoparticles in only one direction – 

either only left or only right for the entire duration of the 

treatment. This ensured that every region of tissue sees as 

many new nanoparticles as possible. In this simulation, 

bringing the particles back in the opposite direction did not 

improve the maximum-over-time metric. Thus, depending 

on what kind of therapy was being considered (fast or slow 

acting), a different DMS strategy was optimal (single or 

bidirectional pull).

Discussion
Metastatic tumors exhibit a diverse set of cellular, patho-

logical, and structural features that make them a challeng-

ing target for therapeutic intervention.2,42 Evaluation at the 

microscopic level shows a variety of histopathologies, both 

within and among different cancer foci. For example, tumor 

grade, cellularity, degree of inflammation, desmoplastic 

host response, microhemorrhages, and necrosis can vary 

from lesion to lesion and even from subregion to subregion 

within a neoplasm. Moreover, the vascular characteristics 

of metastatic tumors differ from normal tissues and among 

cancer sites, both spatially and temporally.5 Tumor vessels 

are often dilated, saccular, tortuous, and disorganized in their 

patterns of interconnection, producing a geometric resistance 

to blood flow and a decrease in perfusion.7 The dysfunc-

tional vasculature is evident at the gross pathological level 

as a striking feature of metastatic lesions is their firm, white 

appearance, suggesting that blood perfusion is less than that 

of most normal organs (Figure 4).
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The chaotic nature of the vasculature and the subsequent 

increase in interstitial fluid pressure can result in uneven, 

fluctuating blood flow in tumors and prevent exposure to 

conventional nanotherapies that rely on the blood supply for 

diffusion-based distribution throughout the body, because the 

highest concentration of systemically delivered therapeutics 

is achieved at sites closest to the blood vessel, and the concen-

tration falls as the distance increases. As an example of this 

phenomenon, a study of local concentration of fluorouracil 

in liver metastases models as compared with adjacent nor-

mal tissue revealed limited fluorouracil penetration in areas 

of poor blood flow.4 Inadequate tumor perfusion can also 

result in hypoxia, which is postulated to be a central feature 

of cancer that is important to the physiological functioning 

and survival of the tumor cells and associated host cells. 

 Historically, hypovascular tumor foci have been indirectly 

observed by their resistance to ionizing radiotherapy that 

relies on tissue oxygen content at the time of treatment.6 More 

recently, hypoxic regions have been described to produce 

genomically unstable, clinically aggressive tumor cells that 

thrive in these regional microenvironments.9 Thus, poorly 

vascularized tumors or tumor subregions can be clinically 

problematic based on both the inability to achieve therapeuti-

cally effective drug levels and the hypoxic microenvironment 

that is favorable to tumor cell growth and progression.

In the present study, we found that metastatic breast 

tumors in liver consistently had a lower number of blood ves-

sels, on average, across the lesions than adjacent normal liver 

tissue (see Figure 6). Moreover, specific tumor subregions 

contained little or no vasculature, with vessel-to-tumor cell 

distances as large as 287 µm (see Figure 7). The one excep-

tion to this pattern was the outlier case A98-28.  Interestingly, 

A98-28 is a liver metastasis of lobular carcinoma, the only 

nonductal cancer that was included in the study. Detailed 

histopathological inspection of this tumor revealed large, 

poorly differentiated cells that did not grow in solid sheets but 

rather in clusters that invaded the liver through the  sinusoidal 

system, expanding it rather than replacing the normal tissue. 

The endothelium of the expanded sinusoids continues to 

express CD31; however, the majority of the CD31-positive 

cells are not blood vessels. Thus, although case A98-28 

appears well perfused, it may in fact be the least vascularized 

tumor in the series due to the pathological features associated 

with metastatic lobular carcinoma.

To date, magnetic drug delivery has been used for focus-

ing antineoplastic agents to primary, superficial tumors and 

has been evaluated in phase I clinical trials by placing a 

strong permanent magnet (0.8 Tesla) near the tumor.50,51,57 

Although this approach is promising to treat single  inoperable 

tumors in known, near-skin surface locations, it does not solve 

the larger clinical problem of increasing therapeutic levels 

in widespread metastatic disease, including lesions that are 

not near the skin surface. For nanotherapy, this is especially 

problematic because nanocarriers will diffuse substantially 

less effectively than small drug molecules. Simulations of 

the effect that magnetic gradients have upon nanoparticle 

movement in tissue revealed that it is possible to use DMS to 

transport nanoparticles from vessel reservoirs in normal tis-

sue to avascular tumor areas. Both single- and two-directional 

dynamic shifts were able to better distribute nanoparticles over 

the tissue space, with the bidirectional approach achieving a 

more even concentration throughout the tumor, showing the 

promise of using magnetic actuation for reaching into regions 

of the body that are inaccessible to pure diffusive movement of 

nanocarriers. Of particular note, the DMS method described 

and simulated here can be applied simultaneously to all 

metastatic foci in a given anatomical region of the body, as 

the magnets used would create sufficient gradients and forces 

on nanoparticles across all target locations, without the use of 

radiological imaging to identify lesions. This is important in 

breast cancer and other common epithelial tumors where many 

hundreds of metastatic sites typically exist in patients with 

advanced disease, ranging in size from grossly visible tumors 

to small, micrometastatic foci (for an example in liver, see 

Figure 4). A one-by-one approach to visualizing each tumor by 

radiological imaging and then using magnetic control to target 

them individually would be impractical; however, DMS does 

not require such imaging and can be applied simultaneously 

to all lesions within a defined anatomical zone.

DMS appears to be a promising solution to the problem 

of low blood supply in tumors. However, there are specific 

caveats that must be considered regarding this approach and 

the results described previously. First, we used vascular den-

sity as a surrogate marker of perfusion, and this assumption 

may not be accurate. In other words, the decrease in vessel 

number in metastatic lesions and the focal subregions with 

few or no vessels are consistent with decreased perfusion, but 

it is also possible that the unique nature of the tumor microen-

vironment, or other factors we have not yet considered, can 

compensate for the disordered vasculature, and so perhaps 

therapeutic levels of drugs or nanoparticles may reach most or 

all tumor cells by diffusion alone. Ultimately, measurement 

of actual drug levels in clinical cancer samples will be neces-

sary to gauge the effect of the abnormal tumor vasculature 

on drug concentration close to and distant from vessels, and 

such studies will be undertaken in future work.
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The second caveat is that the liver tissue utilized as a 

“normal control” in our study may not be an appropriate 

metric for evaluating tumor vessels. Liver is richly vas-

cularized with vessels and sinusoids in order to support 

the extensive metabolic functions of hepatocytes and has 

a high degree of vascular input and output. The fact that 

metastases have fewer vessels than adjacent liver tissue 

does not necessarily indicate that the tumor vasculature is 

incapable of providing therapeutic nanoparticle levels to 

cancer cells.

Finally, the use of external magnets as a nanoparticle 

delivery system requires particles of large enough size to 

generate sufficient force to displace them in tissue. The larger 

the particle, the larger the force. However, as the size of the 

particle increases, the diffusability (D in the differential 

equation described in the Results section) will decrease due 

to mechanical constraints in the microenvironment, includ-

ing physical barriers of cell-to-cell adhesion, the composi-

tion and density of stromal constituents, and the nature of 

the tumor cell-stromal interactions. Overall, the balance 

of magnetic force versus tissue resistance favors medium-

sized particles (.10 nm but ,200 nm). Magnetic forces 

increase with particle volume (radius cubed), whereas the 

tissue resistance initially increases slowly with particle size 

until the particle size nears a defining characteristic of the 

tissue (ie, pore radius for the Renkin Pore model), making 

the resistance grow exponentially thereafter.19,20 In normal 

highly organized and tightly compartmentalized tissues, the 

characteristics that define a tissue will favor smaller particles 

(ie, small pore radii ∼10 nm). But within the disorganized 

and haphazard structure of the tumor microenvironment, 

the tissues can be described to have much larger pore sizes 

that allow relatively unimpeded movement of even large-

sized nanoparticles (∼200 nm) through substantial areas of 

tumor space. Clearly, though, all of these critical aspects of 

magnetic drug delivery will need to be carefully evaluated 

both in future simulations and in model systems designed 

to test and optimize the method in the laboratory. The goal 

in this paper is to present the motivation and initial proof of 

concept for DMS based on autopsy studies of vasculature in 

human metastases and using mathematical modeling that has 

been validated against both in vitro and in vivo experiments 

in prior studies.41,58

Conclusion
In summary, DMS simulations based on quantitative 

analysis of the tumor vasculature in women who died of 

metastatic breast cancer indicate that improved nanoparticle 

 concentrations can be achieved using magnetic gradients 

generated by one or two externally held strong magnets. 

Depending on the desired therapy, slow or fast acting, we 

determined an optimal DMS strategy for improving the 

nanoparticle normalization throughout the entire tumor space 

within the treated anatomical region. The next steps of this 

effort are additional simulations to further refine the modeling 

followed by laboratory evaluation of DMS in ex vivo tissue 

specimens, in order to experimentally test and visualize nano-

particle transport in animals with poorly perfused tumors to 

mimic the situation observed in human patients.
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Supplementary information
Equation (1) describes the basic physics of nanoparticle trans-

port inside the body and shows that accumulation or depletion 

of particles at any location is due to transport by diffusion 

and applied magnetic forces. This type of formulation is 

standard.49,60 Parameters are chosen to reflect the tissue proper-

ties of the region of interest (eg, the diffusion coefficient can be 

changed to reflect parameters of normal or tumor tissue), and it 

is this equation that is simulated here. Equation (2) reflects our 

knowledge about the residence time of nanoparticles in vivo 

and states that the amount of particles that extravasate from 

blood to tissue at a given time is linked to the plasma concen-

tration, which decays exponentially over time due to uptake of 

the nanoparticles by the reticuloendothelial system.

Magnetic fields, gradients, and the 
resulting forces on nanoparticles
For any electromagnet or permanent magnet, a magnetic field 

surrounds the magnet with field lines leaving the north pole 

and re-entering the south pole.45 The field generated will be 

stronger closer to the magnet (specifically at the corners) and 

weaker as the distance from the magnet increases.40,41,45,61 The 

magnetic field falls off very quickly further from the magnet 

relative to its size (larger magnets will have a slower decreasing 

magnetic field strength),41,62 creating a magnetic field gradient, 

and it is this gradient that creates a force that attracts particles 

towards the magnet. For a 20 × 40 cm magnet with a remnant 

magnetization of 2.5 T, the field at 11 cm distance (along the 

long axis of the magnet) will be B ≈ 0.43 T or H ≈ 3.4 × 105 

A/m. The gradient of the magnetic field at that distance will be 

∂H/∂x ≈ 2.7 × 106 A/m2. Using these values and considering a 

magnetic nanoparticle with a diameter of 60 nm, the magnetic 

force41,45 acting on this particle will be F
Magnetic

 ≈ (2/3)a3 µ
0
 

[χ/(1 + χ/3)] H (∂H/∂x) ≈ 0.34 fN = 0.34 × 10-15 Newtons (a 

femto-Newton is 10-15  Newtons). Considering a  Fiber-Matrix 

model with C
F
 = 0.3%, as discussed in the Materials and 

methods section, the reduced diffusion coefficient of the 

described  Fiber-Matrix model will be D
T
 ≈ 0.15. Assuming 

that the reduced diffusion coefficient impacts forced par-

ticle movement in a similar manner as diffusion (Einstein’s 

relation),19,20,42 the tissue resistance can be expressed as fol-

lows: F
tissue-resistance

 = (1/D
T
) 6 π a η V

Magnetic
. At equilibrium, the 

magnetic force and the tissue resistances are equal; therefore, 

the expected speed of a particle through a tissue space will be 

V
Magnetic

 ≈ 0.09 µm/s or ≈90 nm/s.

Simulating nanoparticle movement
Each case simulated consisted of solving the constitutive 

Equation (1) over the entire image and marching it forward 

through time. Nanoparticles enter the surrounding tissue 

(shown in black in Figure 8, top row) from the identified 

blood vessels (white regions in Figure 8) over time. The 

amount of nanoparticles moving from the vessels into the 

adjacent tissue is described by Equation (2), from which 

Equation (1) generates the distribution of particles at the next 

time instant across the region of interest. This calculation is 

marched through time for 3 hours, creating a complete solu-

tion of the nanoparticle distribution for the entire treatment 

window (Supplemental Figure 1).

Boundary conditions
Two sets of boundary conditions are necessary to solve 

 Equation (1): one set to describe the extravasation from the 

blood vessels into the tissue (Equation (2)), and the second to 

describe the movement of nanoparticles out of the simulated 

region.

The first set of conditions is determined by the diffusion 

of particles from the vessels into the adjacent tissue governed 

by the nanoparticle concentration gradient (high in blood, 

low in tissue). Therefore, the movement of particles into the 

tissue is dependent upon the blood plasma concentration. 

Here we describe the concentration of nanoparticles within 

blood plasma as one that decays over time as described by 

 Equation (2). This decay models the known physiological 
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Figure S1 Simulation domain showing the larger region (left panel) that encompasses the smaller region of interest (right panel). The yellow ellipse represents the tumor.
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plasma  concentration of systemically injected nanoparticles. 

From this equation, the half-life (t
half-life

) of nanoparticles in the 

blood plasma can be chosen to mimic physiological param-

eters in humans (here, t
half-life

 = 45 mins was used).50,51

The second set of boundary conditions defines the free 

movement, the flux, of nanoparticles out of the region of 

interest (Supplemental Figure 1). Nanoparticles leave only 

when the magnetic force pulls them out of the simulated 

region; therefore, the total flux of particles out of the tissue 

is equal to the convective flux created by the magnetic forces 

as described by the following equation:

 



  

n D Ci· ( )- ∇ =
Diffusion out of the histological region

there0 ffore

Convective flux from magneticforces To





 



n V C Ji i i·( ) =
ttal flux


Simulation region
In case (b) and (c) of Figure 8, nanoparticles are swept out 

of the simulated region then re-enter during treatment. We 

assessed the effects of particle re-entry on the accuracy of 

our simulation results by tripling the simulated region of 

Figure 8 to 3 × 1.8 mm, which centered on the original 

region of interest (Supplemental Figure 1). The increase 

in size was sufficient enough to accurately track all par-

ticles passing through the original region at any time. This 

did not change the results. In other words, all particles 

near the exterior boundary of the expanded region that 

would either enter or leave (ie, particles that would not 

be correctly tracked by our simulation) were too far away 

from the original region to contribute to its nanoparticle 

concentration.

Physiological modifications
The simulation framework presented can be modified, and 

detail can be added to address additional questions and to 

examine different treatment options. Variations in histology, 

changes to nanoparticles, and alterations in magnetic treat-

ment correspond to changing the parameters in Equation (1) 

and choosing their variation in time and space. For instance, 

the initial distribution of magnetic particles in blood vessels 

after systemic injection, but not yet in surrounding tissue by 

subsequent extravasation, diffusion, and magnetic forces, is 

reflected by choosing the initial condition C
0
 (x, y, z) to match 

the geometric distribution of blood vessels measured from 

the histology (Figure 5). Likewise, computing the magnetic 

forces and including the migration velocity they cause for 

nanoparticles in each location in the body, including the effect 

of varying magnetic fields during treatment, can be included 

in 


V x y z tmagnetic ( , , , ). The impact particle and physiological 

parameters have upon specific terms in Equation (1), however, 

is not always obvious. For example, varying the particle size 

will affect not only the diffusion coefficient D but also the 

magnitude of the particle migration velocity, 


Vmagnetic
, as 

discussed in the Materials and methods section. The diffusion 

coefficient, as is described by Brownian motion, decreases as 

the particle size increases.49 The magnetic forces on particles 

scales with the volume of the particles but is opposed by the 

viscous resistance to nanoparticle motion offered by blood, 

interstitial fluid, or tissue, and that scales nominally with 

particle size. However, assuming various tissue models, as 

particle size increases above the geometrical thresholds of 

the tissue (ie, above the pore size in a Renkin model), the 

tissue resistance climbs very quickly.19,20,24 The net result 

is that the migration velocity increases with the square of 

particle diameter for an optimal range and then decreases 

dramatically.20,41,63–65 Variations in tissue properties also affect 

both the diffusion and the migration velocity parameters. 

Nanoparticles have more difficulty moving through dense 

cellular networks than through interstitial fluid;19,20 thus, 

tissue morphology effects both the diffusion and magnetic 

migration of the particles. Extravasation modifies how these 

particles move out from blood into surrounding tissue. In 

summary, although quantifying tissue properties of diffusion, 

migration, and extravasation is challenging and these param-

eters are often poorly known or uncertain, the mathematical 

model provides the ability to change them in simulations, to 

rapidly see the consequences, and to thus better understand 

how these tissue properties can affect nanoparticle distribu-

tion in tissue.
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