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Abstract. In this paper, we theoretically describe a method to simultaneously
control both the position and orientation of single nano-objects in fluids by
precisely controlling the flow around them. We develop and simulate a control
law that uses electro-osmotic flow (EOF) actuation to translate and rotate rigid
nano-objects in two spatial dimensions. Using EOF to control nano-objects
offers advantages as compared to other approaches: a wide class of objects can
be manipulated (no magnetic or electric dipole moments are needed), the object
can be controlled over a long range (>100 µm) with sub-micrometer accuracy,
and control may be achieved with simple polydimethylsiloxane (PDMS) devices.
We demonstrate the theory and numerical solutions that will enable deterministic
control of the position and orientation of a nano-object in solution, which can be
used, for example, to integrate nanostructures in circuits and orient sensors to
probe living cells.
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1. Introduction

We theoretically describe a technique for simultaneously positioning and orienting single nano-
objects in a fluid in two spatial dimensions by manipulating the flow around them. We address
two object control goals with this technique. The first is the ability to move the object across
large distances (tens of micrometers). The second is the ability to accurately control the
position and orientation of objects of a variety of shapes and material properties—for example,
semiconductors [1], conductors [2] and dielectrics [3].

Previously, we showed simulations demonstrating position control of spherical objects [4]
in a microfluidic device using electro-osmotic flow (EOF) control. The ideas developed in that
study enabled an experimental demonstration of position control of micrometer-sized spherical
objects to sub-micrometer accuracy [5] and subsequently the control of nanoscopic particles
(single quantum dots) to nanometer precision [6]. In this paper, we explain and simulate a
technique that shows how the translational and shear components of the flow field in the device
can be manipulated, to trap an object at a desired position and orientation or manipulate both its
position and orientation along a desired trajectory.

Existing approaches for simultaneously controlling the position and orientation of a single
(or a few) object(s) can be classified into actuation strategies that include optical, magnetic and
electrical techniques. If objects have a higher refractive index than their surrounding medium, a
laser beam can be used to attract the object into the region of highest light intensity. Variations
of this basic principle have been used to transfer translational and angular momentum from the
laser beam to the object either by making use of special optical properties of the object or by
manipulating the wave front of the incident light [7]–[13].

Magnetic fields in combination with fluidic forces have been used to control magnetic
objects [14] or with a combination of optical forcing for translation and electromagnets for
rotation [15]. Apart from the requirement that the object be magnetic, the objects may require
specially designed shapes to enable fluidic actuation [16]. Alternatively, magnetic features are
lithographically patterned on objects to allow manipulation of their orientation by magnetic
fields [17].
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Figure 1. The left panel shows a schematic diagram of the top view of the
proposed device. The electrodes actuate a flow that translates and rotates the
object from its current to its desired position and orientation. The right panel
shows the feedback loop that achieves flow control in the device. At every instant,
a camera captures an image of the object and an image processing algorithm
computes the position and orientation of the object and transmits that information
to the controller. The controller uses this information to actuate a flow in the
device (by creating an electric field that moves the fluid in the device) that
translates and rotates the object to the desired position and orientation.

If the object has a significant dipole moment, dielectrophoresis (a type of electric actuation)
can be used to position and orient nanowires [18]–[23] and biological cells [24]. In this
technique, a high electric field gradient interacts with the object’s dipole moment to translate
and rotate the object. Since the electric field gradients have to be high, the object is controlled
near an electrode in a device where the gradient is steep.

The position and orientation control that we present below uses electrical actuation to
modulate the flow around an object. Our technique depends on controlling viscous drag, a
force that applies to every object, and can hence be used to control a general class of object—
the object does not have to be charged or magnetic or have any other special properties. Our
simulations will show that the object can be controlled across a large (≈100 µm) region. The
approach uses feedback control of shear flow in a microfluidic device to translate and rotate
the object. The fluidic shear force acting on the object (which is assumed to be inertia-less)
suspended in the fluid rotates the object to any desired orientation (left panel of figure 1),
while the translational component of the fluidic drag moves it to any desired location in a
two-dimensional (2D) control region. The position and orientation of the object, which are
randomly perturbed due to Brownian motion, are measured at regular intervals. From this visual
measurement, a feedback control loop determines and applies the fluid flow that will translate
and rotate the object from where it is towards where it should be (see right panel of figure 1).

The flow is actuated electro-osmotically. Here, the electric field moves the fluid, which
moves the object by viscous forces [25, 26] (which is different from electrophoretic or
dielectrophoretic actuation where the electric field creates a force directly on a charged or
polarizable object). By using multiple (here eight) electrodes in concert (see figure 2), it is
possible to create complex electric field patterns in space, and in our thin planar devices those
patterns are faithfully transmitted to the fluid flow in the control region. Feedback control of
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Figure 2. The left panel shows the top view of a typical flow control device. The
device is made of polydimethylsiloxane (PDMS) and consists of eight channels
that merge into a central region. The electrodes are immersed in reservoirs
connected to the channels. The fluid and objects are injected into the reservoirs
and then flow into the central region where the channels merge. A magnified
schematic diagram of this central region is shown in the right panel. The square
region (shown with a dotted black line in the right panel) is the 100 µm × 100 µm
control region.

those patterns in time has allowed us to control the position of single objects [6] and is here
being extended to also allow control of their orientation.

The rest of the paper is organized as follows. Section 2 describes electro-osmotic flow.
Section 3 describes the effect of the fluid on the motion of the object. Section 4 discusses the
control algorithm that is used to manipulate the flow around the object. We show numerical
examples demonstrating object control in section 5 and end with a discussion of additional
considerations towards experiments in sections 6 and 7.

2. Electro-osmotic flow

At the interface between solid and an electrolytic fluid, the surface energy of the solid surface is
reduced by the adsorption of ions from the fluid onto the oppositely charged ions at the surface
of the solid [25, 26]. This results in a charge imbalance in a thin (<100 nm) fluid layer, termed
the diffuse (or Debye) layer, adjacent to the wall–fluid interface of the device.

A potential difference applied at the electrodes creates a planar electric field EE(x̂, ŷ) in the
plane of the device. That electric field moves the ions in the Debye layer, which in turn drags
the rest of the fluid in the device due to viscosity. The flow is laminar (Reynolds number Re
<10−4), has a steady-state velocity profile EU (x̂, ŷ) of a plug flow (that is constant along ẑ apart
from the variation in the thin Debye layer as shown in figure 3) that is linearly proportional to
the applied electric field and has the value [25]

EU (x̂, ŷ) =
εζ

µ
· EE(x̂, ŷ), (1)
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Figure 3. Flow profile in the device (the figure in the right panel is modified
from [25]): The negatively charged surface of the device is shielded by positively
charged ions from the electrolyte solution. The ions in the thin diffuse (Debye)
layer near the device–fluid interface move under the influence of the electric field
and drag the rest of the fluid by viscous forces [25]. The resulting flow profile is
uniform along ẑ (except for the variation in the thin diffuse layer, not drawn to
scale in the figure) with the flow velocity EU proportional to the applied electric
field EE .

where µ and ε are the dynamic viscosity and permittivity of the fluid, respectively, and ζ is the
potential difference across ẑ between the edge of the Debye layer and the device–fluid interface.

Since the electric field is irrotational (curl-free) the fluid velocity in the device, which
follows the local electric field, is also irrotational. This means that EOF can only impart a
translational velocity to a spherical object—one cannot rotate a sphere using EOF. However, as
described in the next section, EOF can translate as well as rotate a non-spherical object such as
an ellipsoid or a nanorod.

3. Translational and rotational velocity of an ellipsoid in electro-osmotic flow (EOF)

Similar to the inertia-free spherical particles6 used previously to demonstrate positional
control [4, 5], an inertia-free ellipsoid will instantaneously translate along the stream lines of
any flow that is set up in the device. If the flow in the device was rotational, one could create a
vortex flow and the rotational velocity of a spherical object would be proportional to the vorticity

6 A simple calculation using Newton’s laws [4] shows that a spherical particle of diameter 10 µm with a density
equal to that of water takes 0.04 ms to reach the ambient translational flow velocity. This interval is small compared
to the expected 10 ms between successive control updates, which allows us to assume that the nanorods (major
axis length of 10 µm and minor axis length of 200 nm) have negligible inertia and their velocity instantaneously
conforms to the local flow field. If the moment of inertia of the sphere is denoted as Is and the rotational drag
coefficient as �s, then a similar calculation for rotation shows that a time tr =

Is·log(β)

�s
=

ρa2 log(β)

15 µ
is needed for the

sphere to reach within 1
β

of the ambient rotational flow velocity of the fluid (ρ and µ are the density and viscosity
of the fluid, respectively, and a is the sphere radius). For the above sphere in water, tr ≈ 0.01 ms for β = 1000.
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Figure 4. The total torque acting on the body is the sum of infinitesimal torques
due to the shear force acting throughout the boundary of the ellipsoid. Due to
the unequal axes lengths of the ellipsoid, a saddle flow (illustrated above) can be
shown to rotate the ellipsoid clockwise [29]. The body-fixed frame of reference
is x–y, and the device-fixed frame is x̂–ŷ.

of the flow. However, for an irrotational flow, one can nevertheless rotate an ellipsoid due to the
interaction of the individual shear components of the flow and the reduced symmetry of the
ellipsoid (as compared to a sphere) as shown below. After computing the flow velocity, exact
expressions for the force and torque acting on an ellipsoid [29] can be obtained by summing
the infinitesimal shear force components (and the resultant torques) acting on every point of the
ellipsoid’s boundary. For the saddle flow shown in figure 4, the net fluidic torque will rotate the
ellipsoid clockwise.

The slow, viscous, incompressible and isothermal flow that is electro-osmotically set up
in the device is well described by Stokes flow [29], which neglects the momentum of the fluid
in the Navier–Stokes equations of fluid dynamics. The ellipsoid is controlled in a plane parallel
to the floor of the device and is assumed to lie far enough (>200 nm) from the floor and ceiling
of the device to neglect increased drag due to wall effects [30]. This claim is supported by recent
calculations [31], which can be applied, for example, to compute the drag correction terms for
a cylindrical particle of diameter 200 nm and length 2 µm, with the nearest point on its surface
located at a distance d = 200 nm from a plane wall, and its axis tilted at an angle φ to the plane
of the wall. Detailed simulations [31], performed for such cylinders (with aspect ratios of 10),
show that the correction term for the (x, y) translational drag coefficients and the rotational
drag coefficient about the z-axis are each less than 15% as compared to the unbounded fluid
drag coefficients for φ as large as 45◦. The correction terms decrease as the aspect ratio of the
cylinder increases because a proportionately lower area of the rod is close to the wall [31].
Hence, we disregard the wall-correction term and use the unbounded fluid drag coefficients in
what follows.

The flow setup in the device is perturbed by the presence of the ellipsoid [32]–[34]. The
linear nature of Stokes flow can be exploited to obtain the force and torque acting on any body
(not just an ellipsoid) that is immersed and free to move in the flow. Denote the surface of the
ellipsoid by x2

a2
1

+ y2

a2
2

+ z2

a2
3
= 1 (here we consider ellipsoids where a3 = a2 and a1 > a2, so a1 is the
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semi-major axis length and a2 is the semi-minor axis length of the ellipsoid). The unperturbed
flow field Eu(Er) (i.e. the flow that would be observed if no object were present) in the device is
approximated to be a superposition of uniform and pure-shear flow fields, i.e. spatial variations
of Eu(Er) of O(a2

1) or higher are neglected.
Denote the translational velocity of the ellipsoid along the device-fixed axes x̂, ŷ (see

figure 4) by Ux̂ and U ŷ , respectively. As shown in figure 4, θ is the angle between the body
and device fixed frames of reference. Denote the angular velocity of the ellipsoid about the
ẑ-axis by ωẑ. Denote by û and v̂ the components of the unperturbed uniform flow along the
x̂- and ŷ-axes, respectively, evaluated at the position that is occupied by the center of the
ellipsoid, while the terms ∂ û

∂ x̂ , ∂ û
∂ ŷ , ∂v̂

∂ x̂ and ∂v̂

∂ ŷ represent the shear components of the flow. The
constant e =

a2
a1

is the ratio of the minor to major axis lengths of the ellipsoid. For the flow Eu(Er)

described above, ignoring parasitic pressure flows and using the assumption of negligible inertia
of the ellipsoid, it can be shown [29] that the translational velocity of the ellipsoid matches the
uniform flow field component

Ux̂ = û,

U ŷ = v̂ (2)

and the rotational velocity of the ellipsoid is given by

ωẑ =
1

2

[(
∂v̂

∂ x̂
−

∂ û

∂ ŷ

)
+

1 − e2

1 + e2

(
∂ û

∂ x̂
(− sin (2θ)) +

∂v̂

∂ x̂
(cos (2θ)). . .

+
∂ û

∂ ŷ
(cos (2θ)) +

∂v̂

∂ ŷ
(sin (2θ))

)]
. (3)

Equations (2) and (3) are derived by integrating the shear and pressure distributions on
the surface of the inertia-less ellipsoid after solving the quasi-static Stokes equations [27]
(see section A of the supplementary information for more details, available from
stacks.iop.org/NJP/13/013027/mmedia). Even if higher order spatial flow variations were
considered (in addition to uniform and pure shear flow terms), successive correction terms
in equations (2) and (3) would differ by the operator D2

≡ a2
i

∂2

∂x2
i
, where xi are the axis

coordinates [34]. In the proposed device, these higher-order terms are of the order O(a2
i /r 2

dev)

and higher compared to the linear terms included in equations (2) and (3); here rdev is the
distance from the center of the control region to the midpoint of any straight edge at the
boundary in figure 5. Since a1

rdev
is 0.1 or smaller in the proposed device, we ignore higher spatial

order flow variations.
Equation (3) can be simplified by making use of two relations between the four shear

components. By continuity, the divergence of the flow field is zero, i.e. ∂ û
∂ x̂ + ∂v̂

∂ ŷ = 0. We also
have that in EOF, since the fluid velocity is proportional to the electric field (as explained
in the previous section), the flow field is curl-free—i.e. the component of the the vorticity
about the ẑ-axis ( ∂v̂

∂ x̂ −
∂ û
∂ ŷ ) (the first term of equation (3)) is identically zero. This simplifies

equation (3) to

ωẑ =
1 − e2

1 + e2

[
∂ û

∂ ŷ
(cos (2θ)) +

∂v̂

∂ ŷ
(sin (2θ))

]
. (4)

Thus, if we apply an electric field that creates the unperturbed flow field (û, v̂) in the device, then
this flow will instantaneously turn the ellipsoid with the rotational velocity ωẑ in equation (4).
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Figure 5. Pre-computed steady-state electric field in the region where the
channels intersect (using COMSOL, www.comsol.com7). The leftmost edge
is maintained at 1 V and all the others are maintained at 0 V. The electric
field E(x̂, ŷ) (which is responsible for the object’s translation) is shown with
white arrowheads. The color plot shows the ellipse rotation that will be
created. For an ellipsoid oriented at θ = 0◦, the shear component ∂

∂ ŷ (E x̂(x̂, ŷ))

decides the direction of the ellipsoid’s rotation (see equation (4)). Thus, in
the reddish hued region, the ellipsoid will turn counterclockwise (seeing into
the paper), and in the bluish hued region it will turn clockwise. We plot
sign( ∂

∂ ŷ (E x̂(x̂, ŷ))) log10(|
∂

∂ ŷ (E x̂(x̂, ŷ))|) to show both the sign and magnitude
of the rotation creating term, which varies between ≈ ±109 V m −2.

Since the flow velocity components û and v̂ are linearly dependent on the electric field, the
translational and rotational velocities of the object are also linearly dependent on the electric
field—a fact that is used in the control algorithm. For any arbitrary orthotropic object (an
object with three mutually perpendicular planes of symmetry) like the ellipsoidal rod (or other
bodies like right elliptical cylinders and rectangular parallelepipeds), the exact same analysis
that has been used in this section can be applied to obtain the translational and rotational
velocities; the only difference will be a different shape-dependent constant, instead of 1−e2

1+e2 ,
in equation (4) [28]. For non-orthotropic objects there will be an additional dependence of
the rotational velocity of the object on the fluid velocity (and not just the fluid shear as in
equation (4)). This is because the force at a particular point on the boundary of the body can
give rise to a torque that is not balanced by an opposing torque (due to a lack of sufficient
symmetry in the body), thus causing the body to rotate [29]. There will also be an additional
dependence of the translational velocity of the object on the fluid shear (and not just the fluid
velocity as in equation (2)). As explained later, this kind of coupling between the translational
and rotational motions of the object can be included by experimenting with an appropriate gain
parameter in the control algorithm.

7 All references to commercial products in this paper are provided only to document how results have been
obtained. Their identification does not imply recommendation or endorsement by NIST.

New Journal of Physics 13 (2011) 013027 (http://www.njp.org/)

http://www.comsol.com
http://www.njp.org/


9

3.1. Translational and rotational Brownian motion of an ellipsoid

Thermal equilibrium between the fluid and any object suspended in it is maintained by the
random collisions between the object and the surrounding fluid molecules. The object translates
and rotates in a time interval dt along random directions by an amount that is, on average,
proportional to

√
dt . Expressions for the translational and rotational diffusion coefficients [35]

of an ellipsoid are given in section B of the supplementary information (available from
stacks.iop.org/NJP/13/013027/mmedia). For the ellipsoids in our simulation (semi-major axis
length a1 = 5 µm and semi-minor axis length a2 = a3 = 100 nm) that are immersed in water of
viscosity (8.9 × 10−4) Pa s at 300 K, the translational diffusion coefficient along the major axis
is 0.306 µm2 s−1 and along the minor axis is 0.199 µm2 s−1. The rotational diffusion coefficient
about ẑ is 0.0197 rad2 s−1. The simulations in section 5 account for ellipsoid dynamics due to
both fluid flow and Brownian motion.

4. Feedback control of the object’s position and orientation

In the presence of Brownian motion of the ellipsoid, one can control the motion of the ellipsoid
by using a feedback control algorithm. This control algorithm computes the voltages that need
to be applied at the electrodes so that the resultant electric field creates a flow in the device,
which translates and rotates the object from the currently measured to the desired position and
orientation. For any position and orientation of the object, there exists a linear map between the
object’s velocity and the voltages applied at the electrodes (as explained next). The necessary
control electrode voltages can be computed by inverting this map, using least squares. At
successive time steps, the object moves to a new position and orientation, there is a new linear
map, and we solve another least squares problem to get the next set of electrode voltages. This
computation can be done in real time, even for complex situations, as demonstrated in our
previous experiments in which we controlled the position of multiple particles at once [5].

The desired trajectory of the ellipsoid is a series of discrete, closely spaced points in the
control region with a prescribed desired orientation at each point. At each control update, the
difference between the current measured position (orientation) of the object and the desired
position (orientation) is multiplied by a proportionality constant called the control gain, yielding
the desired (translational and angular) velocity of the object until the next control update. The
controller inverts the map between the voltages and the desired translational and rotational
velocities to determine the electrode voltages.

We now discuss how to compute this needed linear map, which is a composition of three
individual maps related to the three physical processes that control the particle motion. In our
previous experiments [5], we did not observe any significant spatial or temporal variations in the
surface properties of the PDMS or glass substrates, or the viscosity of the fluid; hence we treat
the zeta potential, permittivity and viscosity as spatially and temporally invariant. The first map
relates the applied voltages to the resulting electric field (including the gradient of the electric
field) in the control region of the device. The second relates the electric field to the fluid flow
field in the device. The final map relates the flow field to the object’s translational and rotational
velocities. We will then show how the composition of these three maps is inverted using least
squares.

For the first map, Laplace’s equation for the electric potential ∇ · (ε∇(8) = 0 is evaluated,
where ε is the permittivity of water and 8 is the electric potential in the domain shown in
figure 5 (which contains the control region as shown in right panel of figure 2).
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Eight electric fields are pre-computed, one for each channel. During operation, the electric
field (or its gradient) at any point in the control region is a linear superposition of these eight
electrical fields. Mathematically, this allows us to write the equations of the first map

E x̂(x̂, ŷ)

E ŷ(x̂, ŷ)

∂

∂ ŷ
(E x̂(x̂, ŷ))

∂

∂ ŷ
(E ŷ(x̂, ŷ))


= [A(x̂, ŷ)]


η1

.

.

η8

 , (5)

where ηi are the applied voltages and the matrix A(x̂, ŷ) (of size 4 × 8) is known for each point
(x̂, ŷ) in the control region using the pre-computed fields.

From equation (1), the fluid velocity at any point in the control region is directly
proportional to the electric field. The flow velocity is assumed to reach steady state
instantaneously after the potential difference is applied8 at the electrodes. The fluid shear (spatial
gradient of the velocity) is directly proportional to the gradient of the electric field at that point,
which gives the second map, between the electric field in the device and the resulting flow and
shear field,

û(x̂, ŷ) =
εζ

µ
· E x̂(x̂, ŷ),

v̂(x̂, ŷ) =
εζ

µ
· E ŷ(x̂, ŷ),

∂

∂ ŷ
(û(x̂, ŷ)) =

εζ

µ
·

∂

∂ ŷ
(E x̂(x̂, ŷ)),

∂

∂ ŷ
(v̂(x̂, ŷ)) =

εζ

µ
·

∂

∂ ŷ
(E ŷ(x̂, ŷ)).

(6)

If the ellipsoid’s center of mass is at the point (x̂, ŷ), then the four relations in equation (6) for
the fluid’s velocity and the shear at (x̂, ŷ) are the only ones needed for the third map, which
relates the fluid’s velocity and shear to the object’s translational and rotational velocities by
equations (2) and (4).

After combining the three maps, the object’s translational velocities Ux̂ , U ŷ and its
rotational velocity ωẑ are given by the final composite linear mapUx̂

U ŷ

ωẑ

=
εζ

µ
·

1 0 0 0
0 1 0 0
0 0 Fc(θ) Fs(θ)

 [A(x̂, ŷ)]


η1

.

.

η8

 , (7)

where ηi are the applied voltages and Fc(θ) and Fs(θ) are given by Fc(θ) =
1−e2

1+e2 cos(2θ) and

Fs(θ) =
1−e2

1+e2 sin(2θ). We now show how best to select the eight electrode voltages to achieve

8 The time Tss required to reach steady state is given by Tss = (
log(100)

π2 ) ·
ρh2

µ
, where h and ρ are the height of the

channel and the density of the fluid, respectively, as derived in [36]. Tss equals 0.32 ms in the device, which is much
less than the control update interval of 10 ms that is typically used in our flow control device. No discernible time
lag in fluid actuation was observed in previous, position control experiments [5] in our group. Hence, we assume
that the flow velocity reaches steady state as soon as the voltages are applied.
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the desired object velocities Ux̂ , U ŷ and ωẑ that will translate and rotate the object from where
it was to where it should be (a similar argument will hold for the general case of N electrodes
in an N -channel device).

At every control update, we request the desired translational and rotational velocities
of the object, which are uncoupled in the case of orthotropic particles like the ellipsoid, to
be, respectively, proportional to the positional and orientational deviations from the desired
trajectory. These deviations, or errors, from the desired path are εx̂ = x̂des − x̂ , εŷ = ŷdes − ŷ
and εθ = θdes − θ , so (εx̂ , εŷ) is the difference between the desired and current object positions
and εθ is the difference between the desired and current object orientations. The desired
object velocities Ux̂ , U ŷ and ωẑ are set to be proportional to the errors εx̂ , εŷ and εθ by the
proportionality gain matrix KpropUx̂

U ŷ

ωẑ


des

= Kprop

εx̂

εŷ

εθ

=

Kr 0 0
0 Kr 0
0 0 Kθ

εx̂

εŷ

εθ

. (8)

The gains Kr and Kθ are penalties on the translational and orientational errors, respectively. A
higher value of Kr forces the controller to select voltages that will translate the object to the
desired position more quickly. Similarly, a higher value of Kθ forces the controller to select
voltages that will rotate the object to the desired orientation quicker. The relative values of
Kr and Kθ decide whether the controller spends more of its control authority on the object’s
translation or on its rotation.

Combining equations (7) and (8), there are more unknowns (the actuator voltages Eη =

(η1 η2 · · · η8)
T) than there are known quantities (the desired velocities Ux̂ , U ŷ and ωẑ). A least

square solution, which chooses the minimal size control that achieves the desired velocities, is
used to find Eη. Denote the linear map of equation (7) by the matrix P(x̂, ŷ)

P(x̂, ŷ) =
εζ

µ
·

1 0 0 0
0 1 0 0
0 0 Fc(θ) Fs(θ)

 [A(x̂, ŷ)]. (9)

The least square fit computes the voltages ηi , which minimize the 2-norm [37] of the electrode
voltages ‖ Eη ‖2. The optimal voltages are given by

η1

.

.

η8

= P+(x̂, ŷ)Kprop

εx̂

εŷ

εθ

, (10)

where P+(x̂, ŷ) = (PT(x̂, ŷ)P(x̂, ŷ))−1PT(x̂, ŷ) is the pseudo-inverse [37] of the matrix P(x̂, ŷ)

and PT(x̂, ŷ) is the transpose of the matrix P(x̂, ŷ). This is the control law—it states how to
compute the electrode voltages given the difference between the actual and desired ellipsoid
positions and orientations.

As for the control design in our previous experimental work [5], in order to avoid
electrolysis (the formation of bubbles at the electrodes that can disrupt the intended flow) we
limit the voltages to a maximum value (termed the saturation voltage) ηsat = 0.15 V. Hence,
the voltages determined in equation (10) are linearly scaled so that this constraint is not
violated. If the maximum absolute value of the eight voltages ηi , computed by the controller
in equation (10), is ηmax, then the eight scaled voltages ηscaled

i that are eventually applied at the
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electrodes are given by

ηscaled
i =

(
ηsat

ηmax

)
ηi (16 i 6 8). (11)

Since the ellipsoid velocity is linearly proportional to the applied voltages, this scaling limits
the magnitude of the maximum achievable translational and rotational velocities of the object.
At every time step this scaling might reduce the magnitude of the object’s velocity but not the
direction (even after voltage scaling, the particle is steered to correct for the deviation from the
desired path, but possibly at a lower speed).

4.1. Non-dimensionalized equations for the feedback loop

A non-dimensionalized version of the governing equations using the flow Peclet numbers is
presented here. The relevant physical parameters governing the dynamics are the length scales
given by the radius of the control region of the device rdev (in figure 5, rdev is the distance from the
center of the control region to the midpoint of any straight edge at the boundary), the saturation
voltage ηsat, the zeta potential ζ at the fluid–PDMS interface and the fluid’s permittivity ε and
viscosity µ. In what follows, the non-dimensional parameters are superscripted with an asterisk.

Since the electric field in the device scales as ηsat

rdev
, the translational velocity VEOF due to

EOF will scale as VEOF = ( εζ

µ
)(

ηsat

rdev
). The time needed for the particle to traverse the control

region will then scale as tdev =
rdev
VEOF

. The electro-osmotic shear σEOF generated in the device will
scale proportionally to the gradient of the electric field. Since the gradient of the electric field
in the control region scales as ηsat

r2
dev

, the shear will scale as σEOF = ( εζ

µ
)(

ηsat

r2
dev

), so σEOF =
1

tdev
. This

scaling of VEOF and σEOF ignores the contribution of the shape of the control region, which is
fixed once the number channels and the ratio cdev

rdev
are fixed (cdev, the channel width, is the width

of the straight edge at the boundary of the control region in figure 5). For the rest of this paper,
as shown in figure 5, the number of channels is fixed at 8 and cdev

rdev
at 0.5.

The non-dimensional displacement and time parameters are chosen as x̂∗
= x̂/rdev, ŷ∗

=

ŷ/rdev, θ∗
= θ and t∗

= t/tdev. The translational [û(x̂, ŷ), v̂(x̂, ŷ)] and shear components
[ ∂ û(x̂,ŷ)

∂ ŷ , ∂v̂(x̂,ŷ)

∂ ŷ ] of the flow field and their non-dimensional counterparts [û(x̂, ŷ)∗, v̂(x̂, ŷ)∗]

and [( ∂ û(x̂,ŷ)

∂ ŷ )∗, (
∂v̂(x̂,ŷ)

∂ ŷ )∗] are related by û(x̂, ŷ) = VEOF · û(x̂, ŷ)∗, v̂(x̂, ŷ) = VEOF · v̂(x̂, ŷ)∗,
∂ û(x̂,ŷ)

∂ ŷ = σEOF · (
∂ û(x̂,ŷ)

∂ ŷ )∗ and ∂v̂(x̂,ŷ)

∂ ŷ = σEOF · (
∂v̂(x̂,ŷ)

∂ ŷ )∗. With the non-dimensional map A(x̂, ŷ)∗

chosen as

A(x̂, ŷ)∗
=


rdev 0 0 0
0 rdev 0 0
0 0 r 2

dev 0
0 0 0 r 2

dev

A(x̂, ŷ), (12)

the non-dimensional flow components can then be stated in terms of A(x̂, ŷ)∗ as

û(x̂, ŷ)∗

v̂(x̂, ŷ)∗(
∂ û(x̂, ŷ)

∂ ŷ

)∗

(
∂v̂(x̂, ŷ)

∂ ŷ

)∗


= A(x̂, ŷ)∗


η∗

1
.

.

η∗

8

 , (13)
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where the non-dimensional voltages η∗

i are given by η∗

i = ηscaled
i /ηsat with ηscaled

i chosen
according to the control law given by equations (10) and (11).

The motion of the ellipsoid is governed by e∗

1 (= a1
rdev

), e (= a2
a1

) and the rotational Peclet
number Peθ = σEOF/Dθ where Dθ , is the rotational diffusion coefficient about ẑ. Since the
expected time for the ellipsoid to rotate by 1 radian about ẑ due to diffusion and the applied
actuation are 1

2Dθ
and 1

σEOF
, respectively, the quantity Peθ compares the actuation’s ability

to compensate for the rotational diffusive motion [38]. A larger value of Peθ signifies a
higher ability of the actuation to compensate for the diffusive motion about ẑ. Denoting the
translational diffusion coefficients along the major and minor axes of the ellipsoid by Dx

and Dy , respectively, we define two functions, T θ
x (e) =

Dx

a2
1 Dθ

and T θ
y (e) =

Dy

a2
2 Dθ

, both of which
depend solely on the parameter e (see section B.1 of the supplementary information, available
from stacks.iop.org/NJP/13/013027/mmedia for details). The function T θ

x (e) is the ratio of the
expected time taken for an ellipsoid to rotate by 1 radian due to rotational diffusion about ẑ, to
the expected time taken by the ellipsoid to diffuse by a distance a1 along the major axis of the
ellipsoid. Similarly, T θ

y (e) is the ratio of the expected rotational diffusion time, to the expected
time taken to diffuse by a distance a2 along the minor axis of the ellipsoid.

With the control law given by equations (8) and (10), the controlled dynamics of an
ellipsoid, including the effect of Brownian motion, is as follows. The geometric center translates
by an amount dx̂∗ along x̂∗, dŷ∗ along ŷ∗, while the ellipsoid rotates by an amount dθ∗ about ẑ
in time dt∗ according to the stochastic dynamics update given by

dx̂∗
= û(x̂, ŷ)∗

· dt∗ + dB∗

x̂ ,

dŷ∗
= v̂(x̂, ŷ)∗

· dt∗ + dB∗

ŷ , (14)

dθ∗
=

1 − e2

1 + e2

[(
∂ û(x̂, ŷ)

∂ ŷ

)∗

cos(2θ∗) +

(
∂v̂(x̂, ŷ)

∂ ŷ

)∗

sin(2θ∗)

]
· dt∗ + dB∗

θ ,

where dB∗

x̂ and dB∗

ŷ are the translational Brownian displacements along x̂ and ŷ, respectively,
and dB∗

θ is the rotational Brownian displacement about ẑ, which are given by

dB∗

x̂ =

√2T θ
x (e) dt∗

Peθ

e∗

1 cos(θ∗) −

√
2T θ

y (e) dt∗

Peθ

e∗

2 sin(θ∗)

 ·Nx(0, 1),

dB∗

ŷ =

√2T θ
x (e) dt∗

Peθ

e∗

1 sin(θ∗) +

√
2T θ

y (e) dt∗

Peθ

e∗

2 cos(θ∗)

 ·Ny(0, 1), (15)

dB∗

θ =

(√
2 dt∗

Peθ

)
·Nθ(0, 1),

where e∗

2 = a2/rdev = e∗

1 · e. The factors Nx(0, 1), Ny(0, 1) and Nθ(0, 1) denote independent
Gaussian random variables with mean 0 and variance 1 which reflect the random character
of Brownian motion (see [39] for an introduction to stochastic update formulae). Equations
(10)–(15) describe the controlled motion of the ellipsoid in non-dimensional terms. We
simulate this motion for different ellipsoid manipulation tasks and Peclet numbers in the next
section.
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Table 1. Examples of parameter values for e∗

1 = 0.05, e = 0.02 and Peθ = 30.

Parameter Description Value

ζ Zeta potential at water–PDMS interface 5 × 10−2 V
µ Viscosity of water 8.9 × 10−4 Pa s
T Temperature 300 K
ε Permittivity of water 78.4 εo[40]
rdev Radius of control region 100 µm
ηsat Saturation voltage 1.5 × 10−1 V
tdev Time scale 1.7 s
VEOF Electro-osmotic velocity 58 µm s−1

σEOF Electro-osmotic shear 0.58 rad s−1

a1 Major axis length of ellipsoid 5 µm
a2(= a3) Minor axis length of ellipsoid 100 nm

5. Numerical simulations of an ellipsoid’s manipulation

In this section, the control law described previously is used to simulate the steering of an
ellipsoid along a desired trajectory, while the ellipsoid is being perturbed by Brownian motion
(according to the controlled ellipsoid dynamics described in equations (10)–(15)). We show
how the ellipsoid can be translated and simultaneously rotated as well as rotated in place
while trapped at a given location. We will show the dependence of the root mean square (rms)
orientation error (while the ellipsoid is trapped) on Peθ and the shape parameter e. We explain
the source of this error in detail with a simple Fokker–Planck model which can be used to
theoretically predict the trapping error in orientation given the size and aspect ratio of the rod
and the flow parameters.

For showing control over different trajectories, the simulations were performed with
parameters e∗

1 = .05, e = .02 and Peθ = 30. Table 1 states a sample set of values of the physical
parameters that reflect the above non-dimensional numbers.

Unless otherwise stated, the non-dimensional simulation results are stated in degrees for
rotation, the translational displacements in units of rdev, time in units of tdev and applied voltages
in units of ηsat. The applied voltages are updated every dt∗

= 5.9 × 10−3, which corresponds
to the 10 ms time lag that is expected in experiments9. This time lag occurs due to the finite
frame rate of the camera and the computational time required by the control and object vision
detection algorithm. The ellipsoid’s position and orientation are assumed to be perfectly known
in these simulations. The choice of gain coefficients Kr and Kθ (see equation (8)) determines
the extent to which the control authority is spent on controlling position versus orientation,
respectively. We experimented with different values of the gain coefficients, for achieving
the optimal trade-off between positional and orientational errors in simulations and settled
on K̂r = Kr ∗ tdev = 1.7 × 106 and K̂θ = Kθ ∗ tdev = 8 × 104 for all the simulations shown here.

9 A computational time of 3.5 ms, using MATLAB (www.mathworks.com), see footnote 6, was required for
previous experiments that implemented position control of spherical particles. This includes the time needed to
estimate the particle position as well as the time needed to compute the control voltages. The frame rate of the Pike
camera from Allied Vision Technologies (www.alliedvisiontec.com), see footnote 6, is 200 Hz at full resolution.
Thus the total feedback loop time of 8.5 ms is within the 10 ms time assumed here.
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Figure 6. Six snapshots showing the ellipsoid tracing the square path (shown
in black). In each snapshot, the flow field is shown with blue arrows and the
voltages applied at the eight electrodes are shown inside the gray circles at
the periphery. The ellipsoid is continually perturbed by Brownian motion and
is controlled and corrected by the flow to start at the bottom left corner of
the desired trajectory, trace the square path and then return to the bottom left
corner. While traversing the trajectory from the bottom left corner to the top left
corner of the square (t∗

= 0.3 and t∗
= 0.9), the ellipsoid is controlled to translate

without rotating (an orientation of θ = 90◦ is maintained). Then the ellipsoid is
controlled to rotate by 90◦ while translating along each of the remaining three
segments of the square. A strobe plot showing only the ellipsoid’s position and
orientation with respect to the square is shown in figure 7.

We will discuss the relation between ηsat, the rotational diffusion coefficient, and the gain
coefficients at the end of this section. The first simulation is of the ellipsoid tracing a square
path, shown in figures 6 and 7.

The square path has a side length equal to 0.8. The ellipsoid initially starts off at the bottom
left corner of the square and is returned to the same point at the end of the simulation. In the
initial part of the simulation (from the bottom left to the top left corner of the square path),
the ellipsoid is controlled to move along a straight line, at a constant orientation (θ∗

= 90◦).
Along the next three sides of the square, the ellipsoid is controlled to rotate by 90◦ by the
time it reaches the end of that side (see movie M1 in supplementary information, available
from stacks.iop.org/NJP/13/013027/mmedia). The positional and orientation errors are shown
in figure 8.

New Journal of Physics 13 (2011) 013027 (http://www.njp.org/)

http://stacks.iop.org/NJP/13/013027/mmedia
http://www.njp.org/


16

0 0.5 1

0

0.5

1

Strobe plot of desired 
position and orientation

0 0.5 1

0

0.5

1

Strobe plot of simulated 
position and orientation

Figure 7. The panel on the left is a strobe plot of the desired orientation of the
ellipsoid along different points of the square path. The panel on the right shows a
strobe plot of the ellipsoid tracing the square path (shown here for 95 consecutive
time steps). The side of the square path (marked in black) measures 0.8 in the
non-dimensional length units. The ellipsoid starts in the bottom left corner, traces
the path and returns to the starting point by t∗

= 5.6.

In figure 9, we demonstrate the ellipsoid being controlled along a more complex ‘hour
glass’ path shape that spans the entire control region. The ellipsoid starts at the bottom left
corner of the trajectory at an initial orientation of θ∗

= 90◦. It is then controlled to move to the
top right corner, then to the top left corner, down to the bottom right corner and finally back
to the bottom left corner. While translating, the ellipsoid is controlled to simultaneously rotate
so that its major axis is aligned with each of the four segments of the trajectory by the time it
reaches the end of that segment (see movie M2 in supplementary information, available from
stacks.iop.org/NJP/13/013027/mmedia).

The next simulation shows the ellipsoid both trapped in place and being rotated from an
initial orientation of 90◦ to a final orientation of 0◦ by EOF control. The change in orientation
of the ellipsoid over time and the associated flow field and electrode voltages are shown in
figure 10 (see movie M3 in supplementary information).

In the initial part of the simulation (until t∗
= 1.17), the controller spends most of its control

authority on rotating the ellipsoid from θ = 90◦ to θ = 0◦ compared to correcting for positional
error due to translational Brownian motion. This results in a nonzero mean translational error
of 1.9 × 10−4 in position, with an rms of 1.3 × 10−4. In the tail end of the above simulation,
when the ellipsoid is nominally trapped at the desired location and orientation, as shown in
figure 12, we observe an rms error in the orientation angle. The rms error in orientation, rmssim,
is computed from the simulations in the following manner:

rmssim =

(
1

n

i=m+n∑
i=m

(θ∗(t∗

i ) − θ∗)2

)1/2

, (16)

where θ∗(t∗

i ) is the orientation of the ellipsoid at the i th time step. There are a total of (m + n)

time steps in the simulation; the ellipsoid first reaches θ∗
= 0◦ at the mth time step (termed the

first passage time) and then θ∗ =
1

n+1(
∑i=m+n

i=m θ(t∗

i )). This rms error is a result of the competition
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Figure 8. The top and bottom panels show the variation of the positional
and orientational errors, respectively, for the ellipsoid tracing the square path.
Denote the coordinates of the ellipsoid at time t∗

i by (x̂∗(t∗

i ), ŷ∗(t∗

i ), θ∗(t∗

i ))

and the coordinates that were desired at the previous time step t∗

i−1
by (x̂∗

des(t
∗

i−1), ŷ∗

des(t
∗

i−1), θ
∗

des(t
∗

i−1)). The positional error εpos(t∗

i ) is defined
as εpos(t∗

i ) ≡ ((x̂∗(t∗

i ) − x̂∗

des(t
∗

i−1))
2 + (ŷ∗(t∗

i ) − ŷ∗

des(t
∗

i−1))
2)

1
2 . The orientational

error εθ∗(t∗

i ) is defined as εθ∗(t∗

i ) ≡ θ∗(t∗

i ) − θ∗

des(t
∗

i−1). For the first side of the
square (0 < t∗ < 1.2), apart from countering rotational Brownian motion, there
was no need to rotate the ellipsoid. Hence, the available control authority could
be committed more fully to correcting positional errors. At subsequent stages,
the need to turn the ellipsoid leads to a decreased capability to correct positional
errors.

between Brownian motion and the controller. The rotational Brownian motion of the ellipsoid
will tend to rotate the ellipsoid away from θ∗

= 0◦, while the controller tries to bring it back to
θ∗

= 0◦.
Since the rotational dynamics depends on the rotational Peclet number Peθ and the shape

parameter e, we plot the dependence of the rms trapping error as a function of these variables in
figure 11. For better visualization, the error is plotted against the aspect ratio 1/e. As one would
expect, the orientation error decreases with increasing Peθ because of comparatively larger
actuation compensating for the particle’s diffusive motion. For a fixed Peθ , the plot shows
a sharp increase in error as the aspect ratio approaches 1, i.e. as the shape of the ellipsoid
approaches that of the sphere (unit aspect ratio). In addition, there is a slow increase in error, for
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Figure 9. Six snapshots showing the ellipsoid tracing the ‘hour glass’ path
(shown in black) that spans the majority of the control region. The ellipsoid
starts at the bottom left corner of the desired trajectory, traces the path and then
is returned to the bottom left corner. Along each of the four segments of the
desired trajectory, the orientation task is to align the major axis of the ellipsoid
along that segment by the time it reaches the end of that segment.

a fixed Peθ , as the aspect ratio increases (compare errors between aspect ratios 10 and 50). We
explain this next.

5.1. The Fokker–Planck equation describing the orientation error

It is possible to theoretically estimate the variation of the rms error in orientation, termed
rmstheor, with respect to the size and the aspect ratio of the ellipsoid as

rmstheor =
√

2

(
1 + e2

1 − e2

)(
Dθ

σmax

)
≡

√
2

(
1 + e2

1 − e2

)(
kT

µ

)(
g(e)

a3
1

)(
1

σmax

)
, (17)

where rmstheor is in radians, σmax is the maximum rotational velocity with which one can turn

the ellipsoid and Dθ ≡

(
kT
µ

)
g(e)
a3

1
(see [35] and expressions for the rotational diffusion

coefficient in section B of the supplementary information, available from
stacks.iop.org/NJP/13/013027/mmedia) to see that Dθ is inversely proportional to a3

1).
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Figure 10. Four snapshots showing the ellipsoid rotating by 90◦. In each
snapshot, the flow field is shown with blue arrows and the voltages applied at the
eight electrodes are shown inside the gray circles at the periphery. The ellipsoid
has been rotated by 90◦ by t∗

= 1.2 after which the controller continuously
adjusts voltages to counteract Brownian motion and maintain the ellipsoid in
place at θ∗

= 0◦.

The value of σmax equals the maximum allowable fluid shear that can be actuated by the
electrodes under the constraint that the applied voltages do not exceed ηsat. In terms of Peθ ,
equation (17) can be rewritten as

rmstheor =
√

2

(
1 + e2

1 − e2

)(
1

σ ∗
max Peθ

)
, (18)

where σ ∗

max is the non-dimensional maximum shear that only depends on the shape of the device,
i.e. on the number of channels and the device geometry parameter cdev

rdev
.

A derivation of the expression in equation (17) makes use of two observations noted in
the simulations. Firstly, the controller spends most of its control authority in maintaining the
ellipsoid’s orientation at θ = 0◦ and relatively less authority on position control. Secondly, as
seen in the bottom panel of figure 12 (which corresponds to e∗

1 = 0.05, e = 0.02 and Peθ = 30),
the controller exerts this authority by maintaining the value of the shear component ( ∂ û

∂ ŷ )
∗ at
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Figure 11. Effect of aspect ratio and rotational Peclet number on rms orientation
error: the parameter e∗

1 , which corresponds to the semi-major axis length of the
ellipsoid, was fixed at the value 0.05. For each (Peθ , e), the plotted values are the
average of 10 runs of the simulation with the ellipsoid being nominally trapped
at 0◦. The error bar for each average is plotted on the graph, while a surface is
fitted to the data to guide the eye. Increasing values of Peθ means that more shear
is available to compensate for the perturbation due to the rotational Brownian
motion of the ellipsoid, thus decreasing the error. For a fixed Peθ , there is a
sharp increase in error as the shape of the ellipsoid approaches that of the sphere
(aspect ratio ≈ 1.1). This effect is explained in the text.

the maximum of ±1.6 for most time steps after t∗
≈ 1.1 (when it is first oriented at θ∗

= 0◦).
It abruptly switches between ±1.6 as needed in order to counteract the rotational Brownian
motion of the ellipsoid. Thus, the controller essentially executes a simple bang–bang-type
control law [41] for maintaining the ellipsoid’s orientation at θ∗

= 0◦: it checks whether the
ellipsoid has positive orientation θ∗ > 0◦, or negative orientation, θ∗ < 0◦, and attempts to apply
the maximum allowable shear (σ ∗

max = 1.6), which can rotate the ellipsoid back to θ∗
= 0◦.

The associated Fokker–Planck equation for the probability distribution function of θ that arises
from the stochastic differential equation that describes the above simplified control law yields
equation (17), as explained in detail in section C of the supplementary information (available
from stacks.iop.org/NJP/13/013027/mmedia).

In figure 13, we compare rmstheor and rmssim for a range of ellipsoid sizes a1 and aspect
ratios a1

a2
(note: e =

a2
a1

). The simulations for computing rmssim were performed with the flow
parameters stated in table 1, with the ellipsoid being trapped by EOF control at the center of
the control region. For plotting rmstheor, we set the maximum shear, which is a property of
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Figure 12. The top panel shows the temporal trace of the ellipsoid’s orientation
as it is being turned by 90◦. The bottom panel shows the temporal trace of the
‘unperturbed’ fluid shear rates, ( ∂ û

∂ ŷ )
∗ in red and ( ∂v̂

∂ ŷ )
∗ in blue, computed at the

geometric center of the ellipsoid. For most of the time steps after t∗
= 1.2, the

controller can be seen to maintain the value of the shear component ( ∂ û
∂ ŷ )

∗ at
the maximum it can create, ±1.62, or it abruptly switches between these values.
This switching counteracts the rotational Brownian motion of the ellipsoid and
maintains its orientation at θ∗

= 0◦.

the device/controller and not the ellipsoid, as σmax = 0.94 rad s−1 (corresponding to σ ∗

max = 1.6
shown in figure 12). Given that we disregard any loss of control authority for position control
in the simple model of the control law that was used to derive rmstheor, the good match between
rmssim and rmstheor for the range of particle sizes and aspect ratios under consideration verifies
that most of the controller’s authority is indeed spent in controlling the orientation rather than
the position of the ellipsoid.

For a fixed aspect ratio, the rotational diffusion coefficient varies inversely as a3
1 (as

opposed to the translational diffusion coefficient, which is inversely proportional to a1). Hence
as a1 decreases, the rms error should increase as seen in figure 13. The increase in aspect
ratio (a1

a2
), for fixed a1, causes a comparatively weaker increase in the diffusion coefficient

and consequently in the rms error. For a fixed a1, the aspect ratio-dependent term 1+e2

1−e2 (in
equation (17)) increases the rms error as e → 1. This is observed in figure 13, more noticeably
for smaller particles, at a1

a2
= 1.1. This increase in rms error reflects the loss in the ability of a

curl-free flow to rotate a near-spherical-shaped particle.

New Journal of Physics 13 (2011) 013027 (http://www.njp.org/)

http://www.njp.org/


22

Figure 13. Comparison of rms errors in orientation between the theoretical
estimate rmstheor (equation (17)) and the simulation-based estimate rmssim

(equation (16)) for flow parameters stated in table 1. For each ellipsoid size
and aspect ratio, the plotted value of rmssim is the average of 10 runs of the
simulation with each run lasting 50 s while the ellipsoid was trapped at the center
of the control region. The error bars for the simulation-based estimate rmssim are
shown in the inset for a1 = 2 µm, while the error bars for other values of a1 are
too small to depict on the plot. The plot shows the rms as the ellipsoid size (a1)
decreases. For a fixed a1, the plot shows an increase in rms error at the highest
and lowest values of the aspect ratios (a1

a2
) with a dip in rms error at a1

a2
≈ 2. The

diffusion coefficient increases weakly with aspect ratio. Consequently, for a fixed
size a1, there is a comparatively slow increase in rms error seen for values a1

a2
> 5

in the plot. As the aspect ratio decreases (a1
a2

→ 1), there is a sharper increase

in rms error due to the term 1+e2

1−e2 in equation (17). This effect is noticeable
for smaller ellipsoids (a1 6 3 µm). The good match between rmstheor and rmssim

shows that orientation control is harder to achieve and so the controller spends
most of its authority in controlling orientation rather than position. The ellipsoid
size a1 = 3 µm and the aspect ratio a1

a2
= 1.2 are seen to be lower bounds for

maintaining an rms error of 5◦.

In another work by our group [6], we have been able to experimentally show position
control of nanoscopic particles by EOF-based position control in a highly viscous fluid. This was
possible because the actuation was not saturated while trying to control the particle position but
the increased viscosity reduced the translation diffusion coefficient. However, this avenue is not
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feasible for orientation control because the actuation does saturate while trying to compensate
for rotational diffusion. Thus the effectiveness of rotational control is set by actuator saturation.
The rotational Peclet number Peθ is independent of fluid viscosity. Seen in dimensional terms,
the rotational diffusion coefficient Dθ as well as the maximum shear σmax (which was set as the
maximum value of the fluid shear ∂

∂ ŷ (û) observed in figure 12) are both inversely proportional
to the fluid viscosity (see equation (11) in section B of the supplementary information, available
from stacks.iop.org/NJP/13/013027/mmedia, for an expression of the diffusion coefficient and
equation (6) in the main text for the shear field). Hence, increasing the fluid viscosity does not
decrease the value of the rms error in orientation (since rmstheor ≈ Dθ/σmax). Thus, in the control
model described in this paper, for the flow parameters stated in table 1, even though slender
particles (where a2 = 100 nm for example) can be controlled, a1 = 3 µm and a1

a2
= 1.2 are seen

to be lower bounds on the particle size and aspect ratio for maintaining rms errors in orientation
of around 5◦, irrespective of the fluid viscosity. Since the control voltages are not allowed to
exceed ηsat penalizing the orientation error in equation (10) by indefinitely increasing the control
gain Kθ does not reduce the orientation error below what is allowable by the maximum shear
σmax. Instead one could reduce electrolysis at the electrodes by protecting them with a film of
nafion [42]. This would allow for an increased value of ηsat, and hence an increased value of
σmax, thus reducing the rms error. This will be investigated in future experiments.

6. Additional considerations towards experiments

In this section, we consider additional features that will be important for future experiments
and applications. We first consider the effect of the size and shape of more general objects
for flow control. For other types of orthotropic particles, for example a cylinder, there will
be a different constant, instead of 1−e2

1+e2 , that determines the rotational velocity of the particle in
equation (4). This constant can be computed by simulating the flow around the cylinder with the
Stokes flow equations (described in section A of the supplementary information) and integrating
the resulting shear and pressure distributions on the surface of the cylinder. The cylinder’s
motion can be controlled using a similar control law modified with this new constant. Also
in experiments, the exact size of the cylinder can only be known to a certain precision. Since the
control voltages depends on the object size (through the P(x̂, ŷ) matrix in equation (9)) as well
as on the gain matrix Kprop in equation (10), one could compensate for the imprecise knowledge
of the object size by experimenting with the value of Kprop until a suitable performance is
achieved.

For non-orthotropic particles, since translation and rotation are coupled, the structure of the
P(x̂, ŷ) matrix will change. In particular, some of the elements of the matrix that premultiplies
A(x̂, ŷ) in equation (9) will have a nonzero value. However, one can still compute the pseudo-
inverse of P(x̂, ŷ) and obtain the control voltages, after one makes an appropriate choice of
Kprop. In this case, Kprop should be chosen to be non-diagonal to ensure that orientation and
position errors are penalized in a manner that accounts for the coupling between translation and
rotation.

We have shown simulations in which the object is being controlled in two dimensions;
however, the translational diffusion of the object in the z-direction and the rotational ‘pitching’
diffusion about the body-fixed y-axis can bring the object in contact with (and thus might make it
stick to) the glass and PDMS surfaces that form the floor and ceiling of the device, respectively.
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However, the object may have a natural electrostatic repulsion to the wall and, if not, coatings
can be applied to the device that will prevent sticking of the object to the device [43]. With
such coatings and by considering devices that are thin with respect to the object length, one can
mitigate the tendency of the object to pitch out of the plane in which it is being controlled. Even
when the object pitches out of plane, one does not completely lose the ability to control the rod
in the plane of the device. As long as the pitching angle is small, one should expect to control
the rotation about ẑ (normal to the device plane) with the same control law as proposed in this
paper, with a modified rotational gain Kθ (see equation (8)).

Our control algorithm assumes that the object velocity exhibits a linear dependence on the
electric field (see equations (2) and (4)). However, the object itself might have a charged Debye
layer at its interface with the surrounding fluid. In the presence of an applied electric field, the
ions in the Debye layer will move the local fluid surrounding the object, which can in turn impart
an unintended translational and rotational velocity to the object. Such an electrophoretic motion
of the particle, due to its own (uniform) zeta potential, is linearly dependent on the electric
field [44] and can be readily accommodated within our control law as explained in section D of
the supplementary information (available from stacks.iop.org/NJP/13/013027/mmedia).

However, depending on whether the object is strongly polarizable, one could observe a
quadratic dependence of the velocity on the electric field, as opposed to the strictly linear
dependence described in the previous section. This quadratic dependence is induced charge
electrophoresis (ICEP) [45]–[48]. This effect is explained in section D of the supplementary
information where we show that the magnitude of the rotational velocity of the ellipsoid due to
ICEP using the approximations used by Saintillan et al [48] is negligible (less than 6% of that
due to EOF) due to the low electric field strengths (less than 7 V cm−1) at the ellipsoid’s location
in the control region. The translational velocity of the ellipsoid due to ICEP is identically
zero [48]. This matches well with experimental results [49], where the rotational velocity of a
comparably sized object (6 µm × 300 nm) in water due to ICEP was noticeable only at electric
field strengths that were greater than 30 V cm−1. Hence this nonlinear effect can be safely
neglected in our simulations.

7. Conclusion

We have described the physics that shows how a planar electro-osmotic flow translates and
rotates an object that is immersed in it. The map describing this physics can be inverted to
obtain a control law that allows one to manipulate the position and orientation of the object by
electrically actuating the flow. Our simulations and theoretical model show how the performance
of the algorithm scales with the size and aspect ratio of an ellipsoidal object and we have
explained how this approach can be extended to objects of more general shapes. In order to
realize what we have discussed experimentally, we need to extend our vision algorithm to also
estimate the orientation of objects. The vision algorithm has to be robust to the uncertainty in
measurement due to pixelation in the camera sensor, dark noise from the camera, low photon
counts if the objects are dimly fluorescent or measurement noise due to imperfect estimation
of a small metallic object’s orientation from its scattered light. We are currently developing
the needed vision algorithms as well as implementing our control methods in hardware, to
demonstrate position and orientation control of one and multiple objects simultaneously in
experiments. These results will be reported in future publications.
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Supplementary Information
All reference numbers cited in the Supplementary Information (SI) correspond to

the references listed at the end of the SI.

A. Linear dependence of the translational and rotational velocity of a

nano-object on the boundary conditions in a Stokes flow

Consider an arbitrary rigid object immersed in a Stokes flow, whose hydrodynamic

center translates with a velocity ~U while rotating about an axis passing through its

geometric center with angular velocity ~ω. The ‘unperturbed’ fluid velocity set up in the

device, denoted by ~u(~r) where ~r is the position vector with respect to the hydrodynamic

center of the object, will be perturbed by the motion of the object. For a spherical

body, this perturbation is negligible beyond 4 object diameters [1, 2, 3]. In the absence of

external body forces, the quasi-static Stokes equations for the velocity ~v(~r) and pressure

p(~r) are given by [4]

∇p(~r) = µ∇2~v(~r)

∇ · ~v(~r) = 0 (1)

where µ is the dynamic viscosity of the fluid. Assuming that the fluid does not slip

on the surface of the object, the boundary condition for the velocity at a point with

position vector ~rp (with respect to the hydrodynamic center) on the surface of the object

is given by

~v(~rp) = ~U + ~ω × ~rp (2)

Since the flow is assumed to be unbounded, the corresponding boundary condition, at

distances far from the object, is that the original flow ~u(~r) is unperturbed by the object,

~v(~r) → ~u(~r) as |~r| → ∞ (3)

This approach gives the force and torque acting on the object (by integrating the shear

and pressure distributions on the boundary of the object) in terms of the object geometry

and the viscosity, which are known, and the unperturbed flow ~u(~r), which is the flow

that we set up using the electrodes in the device. The boundary conditions in Eqns. 2

and 3 can be split into three separate sets of boundary conditions and due to the linear

nature of the Stokes flow,the object velocity will be the sum of the velocities due to each

of these three sets [4].

The first of the three boundary conditions mentioned above is the ‘stationary’

condition given by

~vstat(~rp) = − ~u(~rp)

~vstat(|~r| → ∞) = 0 (4)
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This corresponds to the case of the object being held stationary in the presence of the

unperturbed flow flowing past its surface, which goes to zero at infinity. The second

boundary condition is termed the ‘quiescent’ condition, in which the object is moving

with the translational velocity ~U and rotating with an angular velocity ~ω in an otherwise

quiescent fluid. The equation for this boundary condition is

~vqui(~rp) = ~U + ~ω × ~rp

~vqui(|~r| → ∞) = 0 (5)

The third condition is that of the flow that is unperturbed by the presence of the object.

~vunpert(~r) = ~u(~r) for all ~r (6)

The sum of the velocities at the boundary of the object (i.e., at ~r = ~rp), as well as

for |~r| → ∞, for the three boundary conditions in Eqns. 4, 5, and 6 equals the boundary

conditions on the object surface in Eqn. 2 and the boundary condition as |~r| → ∞ in

Eqn. 3, for the original problem. One can compute the force and torque contributions

from each of the three boundary conditions and sum them to get the force and torque

for the original set of boundary conditions in Eqns. 2 and 3 [4].

The force and torque on an arbitrary object that comes from the ‘stationary’

boundary condition in Eqn. 4 can be computed by expressing the unperturbed flow

~u(~rp) on the surface of the object in terms of a Taylor series expansion about the velocity

~uo at the center of the object and then integrating the shear and pressure distributions

arising from each of the terms in the series [4]. We note here that the same procedure

can be carried out for a object having any arbitrary geometry [4].

The force ~Fqui and torque ~Tqui on an arbitrary object that comes from the ‘quiescent’

boundary condition in Eqn. 5, can always (regardless of object geometry) be expressed

in the following form

~Fqui = − µ(K · ~U + CT · ~ω)

~Tqui = − µ(C · ~U + Ω · ~ω) (7)

where the matrices K, C, and Ω, whose elements are the drag coefficients, are completely

determined by the object geometry (here CT is the transpose of C). We note here

that due to the ‘coupling’ matrix C, one can, for example, have a translational force

acting on a object even when it initially starts off from a pure rotational motion (or

conversely, a torque from an initial pure translational motion). This type of coupling

is exhibited by objects that lack sufficient symmetry, for example, helical screw-shaped

objects. However, for orthotropic objects - that is those objects that have three mutually

perpendicular planes of symmetry, for example an ellipsoid - the coupling matrix C is

identically zero.

Finally, using Gauss’ divergence theorem, it can be shown that the force and torque

on any object from the flow field arising from the ‘unperturbed’ boundary condition

(Eqn. 6) is identically zero [6] if the velocity field ~u(~r) is absent of singularities (like

sources or sinks) in the interior of the volume occupied by the object.
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The resultant force and torque expressions for the stationary and quiescent

boundary conditions, when evaluated [4] for an inertia-free ellipsoid in a flow that is

a combination of uniform and pure shear flow, yields the translational and rotational

velocity expressions stated in the main text.

B. Brownian motion coefficients of an ellipsoidal object

Thermal equilibrium between the fluid and any object suspended in it is maintained

by the random collisions between the object and the surrounding fluid molecules. In a

given time interval δt these collisions tend to translate and rotate the object along

random directions by an amount that is, on average, proportional to
√

δt. This

proportionality was demonstrated by Einstein [7] and Perrin [8, 9] for translational

and rotational Brownian motion for spherical and ellipsoidal objects and is a result

of the more general fluctuation-dissipation theorem [10] which can be used to show the

inverse relationship between the drag and diffusion coefficients of a spherical object [11].

Brenner extended this result for Brownian motions in all six degrees of freedom of an

arbitrarily shaped object [5].

Here, we state Brenner’s calculation [5] of the translational and rotational

diffusional coefficients of an ellipsoid with principal axes a1, a2, and a3 whose surface is

given by

x2

a2
1

+
y2

a2
2

+
z2

a2
3

= 1 (8)

Define the terms αβ, χ, and ∆(λ) (where λ is a dummy variable) by

αi =

∫ ∞

0

dλ

(a2
i + λ)∆(λ)

(i = 1, 2, 3)

χ =

∫ ∞

0

dλ

∆(λ)
(9)

∆(λ) = [(a2
1 + λ)(a2

2 + λ)(a2
3 + λ)]1/2

The translational diffusion tensor of an ellipsoid DT is given by

DT =
kT

16πµ

i=3
∑

i=1

~qi~qi(χ + a2
i αi) (10)

where k is the Boltzmann coefficient, T and µ are the temperature and dynamic viscosity

of the fluid respectively. The term ~qi~qi denotes the tensor formed by the outer product

of the unit vector ~qi with itself (in our situation, ~qi~qi is a 3 X 3 matrix whose (i, i)th

entry is 1 and the other eight entries are 0).

The rotational diffusion tensor of an ellipsoid DR is given by

DR =
3kT

16πµ
(~q1~q1(

a2
2α2 + a2

3α3

a2
2 + a2

3

)+~q2~q2(
a2

3α3 + a2
1α1

a2
3 + a2

1

)+~q3~q3(
a2

1α1 + a2
2α2

a2
1 + a2

2

))(11)

where each of the scalars that multiply the three matrices ~qi~qi (i = 1, 2, 3), represents

the rotational diffusion coefficient about the corresponding axis ei. The value of the

translational diffusion coefficient for a rod in water at 300 K, with a1 = 5 µm and
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a2 = a3 = 100 nm along the major axis is 0.306 µm2/s and along the minor axis is 0.199

µm2/s. The rotational diffusion coefficient Dθ, which is the component of DR about ẑ,

is 0.0197 rad2/s. The rotational diffusion coefficient is inversely proportional to a3
1 and

is weakly dependent on the aspect ratio e = a2

a1

. In the main text, below Equation 17,

we use this functional definition of Dθ, i.e., Dθ ≡ kT
µ

g(e)
a3

1

B.1 Ratio of rotational to translational diffusion times are completely

determined by e for axi-symmetric ellipsoids

Using the transformation λ∗ = λ
a2

1

, the shape parameter e (= a2

a1

), and Eqn. 9, for

ellipsoids with a2 = a3 we have

α1 =
1

a3
1

∫ ∞

0

dλ∗

(1 + λ∗)[(1 + λ∗)(e2 + λ∗)2]
1

2

≡ 1

a3
1

· fα1
(e)

α2 =
1

a3
1

∫ ∞

0

dλ∗

(e2 + λ∗)[(1 + λ∗)(e2 + λ∗)2]
1

2

≡ 1

a3
1

· fα2
(e) (12)

χ =
1

a1

∫ ∞

0

dλ∗

[(1 + λ∗)(e2 + λ∗)2]
1

2

≡ 1

a1

· fχ(e)

where fα1
(e), fα2

(e), and fχ(e) as defined are each completely determined by e.

From Eqn. 10, the translational diffusion coefficient along x and y are given by

Dx = kT
16πµ

(χ+a2
1α1) and Dy = kT

16πµ
(χ+a2

2α2) respectively. Eqn. 11 gives the rotational

diffusion component about z as Dθ = 3kT
16πµ

(
a2

1
α1+a2

2
α2

a2

1
+a2

2

). Thus, using Eqn. 12 we see that

the ratio of diffusion times T θ
x (e) and T θ

y (e) are both, completely determined by e and

are given by

T θ
x (e) =

(

fχ(e) + fα1
(e)

fα1
(e) + e2fα2

(e)

) (

1 + e2

3

)

T θ
y (e) =

(

fχ(e) + e2fα2
(e)

fα1
(e) + e2fα2

(e)

) (

1 + e−2

3

)

(13)

C. Derivation of expression for RMS error for a simple model for

orientation control

We describe a simple physical picture of the relation between the RMS error in

orientation and the action of the control algorithm at every time step. Our analysis

here assumes that there is no time delay in the application of the control, as opposed

to the 10 ms delay that was purposely modeled in the simulation. If the control task is

to maintain the ellipsoid at an orientation of 0◦, we observe from the simulations that

the controller spends most of its control authority on maintaining the rod orientation

at θ = 0◦ (and relatively less authority on position control), thus essentially executing

a simple control law: It checks whether the ellipsoid has positive orientation θ > 0◦,

or negative orientation, θ < 0◦, and attempts to apply the maximum allowable shear

that can rotate the rod back to to θ = 0◦. There does exist a maximum allowable shear

because the voltage applied at any of the electrodes is not allowed to exceed ηsat and

one cannot demand that the controller create a flow that rotates the ellipsoid faster
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than the shear flow that is dictated by ηsat. Within this idealized scenario, the control

algorithm is basically an example of bang-bang control [12] - a type of control in which

the controller abruptly switches between two (or more) states.

The Langevin form [13] of the stochastic differential equation (SDE) for the simple,

bang-bang type controller model, that maintains the ellipsoid at θ = 0, is given by

dθ = −1 − e2

1 + e2
σmax · sign(θ)dt +

√

2Dθdt · N (0, 1) (14)

where e = a2

a1

is the ratio of the minor axis length to the major axis length of the

ellipsoid, Dθ is the rotational diffusion coefficient, N (0, 1) is a random variable with a

Gaussian distribution having mean 0 and variance 1, and σmax is the maximum possible

shear that can be applied to the particle. Equation 14 means that the controller checks

for the sign of the orientation (i.e., whether θ > 0 or θ < 0) and applies the maximum

amount of shear σmax in the opposite direction so that the particle returns to θ = 0.

With this simplified description of the controller’s action, we can write an expression

for the RMS error of orientation, which we denote as RMStheor. We first write the

following governing equation (the Fokker-Planck equation [13]), for the time evolution

of the probability distribution function (pdf) f(θ, t) of the orientation angle θ at time

t, for the SDE 14

∂

∂t
f(θ, t) =

1 − e2

1 + e2
σmax ·

∂

∂θ
(sign(θ)f(θ, t)) + Dθ

∂2

∂θ2
f(θ, t) (15)

At steady state, i.e., when the pdf f(θ) does not change with time, the left hand side

of Eqn. 15 equals zero. Integrating the right hand side with respect to θ we get

k · sign(θ)f(θ) +
∂

∂θ
f(θ) = A (16)

where A is some constant and k = (1−e2)·σmax

(1+e2)·Dθ
. When the rod is trapped at θ = 0◦, with

any reasonable controller, we expect that the nanorod’s orientation will be allowed to

vary only in a small range of angles around θ = 0◦. This implies that the probability

that θ is large decreases monotonically and should approach zero for large θ. Hence

f(θ) → 0 as θ → ∞ and ∂
∂θ

(f(θ)) → 0 as θ → ∞. Using this in Eqn. 16, we get A = 0.

Integrating the left hand side of Eqn. 16 with respect to θ, we get

f(θ) · exp(

∫ θ

0

k · sign(θ)dθ) = B (17)

where B is some constant. Thus we get that

f(θ) = B · exp(−k|θ|) (18)

where |θ| refers to the absolute value of θ.

By imposing the normalization condition for the pdf f(θ), i.e.
∫ ∞

−∞
f(θ)dθ = 1, we

get that

f(θ) =
k

2
· exp(−k|θ|) (19)
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The RMS error (standard deviation) RMStheor of the pdf f(θ) given in Eqn. 19 is given

by

RMStheor = (

∫ ∞

−∞

θ2 · k

2
· exp(−k|θ|)dθ)

1

2 (20)

Solving the right hand side of the above equation for RMStheor and substituting the

value of k gives

RMStheor =
√

2

(

1 + e2

1 − e2

) (

Dθ

σmax

)

(21)

D. Electrophoretic motion of the particle

Suppose that the nanorod is a perfect insulator and the charges inside it cannot

be polarized. In such a case the net spatial distribution of the charges in the Debye

layer surrounding the nanorod will not change under the applied electric field although

the individual ions themselves could move around. For a spatially varying electric field,

Sellier[14] considered the case of the electrophoretic motion of a particle with a uniform

zeta potential surrounded by a thin Debye layer, that is immersed in an unbounded

fluid which is at rest at infinity. So the fluid is not moving due to electro-osmosis as in

our device. It only moves due to the perturbation caused by the particle motion. He

showed that this motion is linear in the electric field (for translation) and electric field

gradient (for rotation). Since the fluid motion is governed by Stokes flow (as stated in

Seller’s paper and in ours), these particle electrophoretic velocities can be superposed on

the particle velocities attained due to electro-osmotic actuation in our device (which are

stated in Eqn. 7 of our main paper). This net velocity, both translational and rotational,

still show a linear dependence on the electric field and its gradient respectively. However,

depending on the sign of the surface charge on the object, its velocity may be reduced

by a factor (1 − ζp

ζf
) due to the mobility being proportional to (ζf − ζp) instead of just

ζf as stated in the main article (where the particle has its own uniform zeta potential

ζp while the fluid has a zeta potential ζf). Even if ζp = ζf/2, the smallest ellipsoid size

a1 that can be controlled (everything else staying the same) should only increase by a

factor of 21/3 (in accordance with Eqn. 17 of the main text) as compared to the zero

electrophoresis case (ζp = 0). As a result, this kind of linear electrophoretic motion does

not require any changes in our control algorithm.

However one could see nonlinear effects arise due to the polarizibility of the object

and the associated change in the charge distribution in the Debye layer surrounding the

object. This is called induced charge electrophoresis (ICEP) because the electric field

induces a charge polarization inside the object which in turn causes the charges in the

Debye layer to be polarized. Such a movement of the fluid in Debye layer surrounding

the object, will impart an unintended velocity to the object. The translational velocity

remains unchanged [15], but the rotational velocity will show a dependence on the square

of the electric field strength [15], in a direction that will tend to align the major axis of

an ellipsoidal nanorod along the local electric field. In our simulations, the magnitude
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of this rotational velocity is negligible due to the low electric field strength as we show

below.

For a slender body. the rotational velocity ~ωICEP that is (unintentionally) created

by our control technique due to induced charge electrophoresis is given by [15]

~ωICEP =
ǫ

µ
(~p. ~̃E)(~p × ~̃E) (22)

where ~p is the unit vector along the major axis of the ellipsoid, ~̃E is given by

~̃E = (
~p~p

1 + L||

+
I − ~p~p

2(1 + L⊥)
) ~E (23)

where ~E is the unperturbed electric field at the center of the object (by unperturbed, we

mean the electric field in the absence of the object). For slender bodies the depolarization

factors L|| and L⊥ associated with the component of the unperturbed electric field along

the axes of the ellipsoid, can be approximated by L|| = 0 and L⊥ = 1
2
. In such a case,

we can place an upper bound on the magnitude of ωICEP as

|~ωICEP | ≤
ǫ| ~E|2
6µ

(24)

In the simulation in which we rotate the object from an initial orientation of 90◦ to a

final orientation of 0◦, we split the simulation into two parts. The first part is the one

in which the object orientation is far from the desired value of 0◦ (this corresponds to

the first 1.8 s of the simulation as seen in Fig. 10 of the main paper). The second part

of the simulation is when the object is being trapped at 0◦. We make this distinction

because in the first part, the error in orientation is large and hence the controller is

focused on creating a strong shear component of the flow and hence a strong gradient of

the electric field. The electric field strength at the center of the object in the first part

of the simulation is on average an order of magnitude lower than the second part of the

simulation in which the error in orientation is small and hence the controller will have

to correct for the position as well as the orientation (correcting for the position means

creating a large enough flow velocity, which implies creating a large enough electric field

strength).

The mean strength of the electric field at the center of the object in the first part

of the simulation is 0.52 V/cm and the mean value of the electric field strength in the

second part (while the object is being trapped) is 6.11 V/cm. Using these values of the

electric field strengths in Eqn. 24, we get that ωICEP = 3.5×10−4 rad/s in the first part

of the simulation and ωICEP = 4.8 × 10−2 rad/s in the second part of the simulation.

As noted in the main paper, the rotational velocity applied by our control algorithm

using hydrodynamic drag is 0.94 rad/s on average (throughout the simulation). Thus

in the first part of the simulation |~ωICEP | is 0.03 % of the rotational velocity applied by

our control and at most 5.1 % in the second part of the simulation. In our simulations,

we neglect this electrophoretic rotational velocity of the object, i.e., we assume that the

movement of the charges in the Debye layer surrounding the object does not affect the

object’s velocity.
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