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a b s t r a c t

In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood

stream and magnets are then used to concentrate them to disease locations. The behavior of such

particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue),

extravasation, and the applied magnetic fields. Using physical first-principles and a sophisticated

vessel-membrane-tissue (VMT) numerical solver, we comprehensively analyze in detail the behavior of

magnetic particles in blood vessels and surrounding tissue. For any blood vessel (of any size, depth, and

blood velocity) and tissue properties, particle size and applied magnetic fields, we consider a Krogh

tissue cylinder geometry and solve for the resulting spatial distribution of particles. We find that there

are three prototypical behaviors (blood velocity dominated, magnetic force dominated, and boundary-

layer formation) and that the type of behavior observed is uniquely determined by three non-

dimensional numbers (the magnetic-Richardson number, mass Péclet number, and Renkin reduced

diffusion coefficient). Plots and equations are provided to easily read out which behavior is found under

which circumstances (Figs. 5–8). We compare our results to previously published in-vitro and in-vivo

magnetic drug delivery experiments. Not only do we find excellent agreement between our predictions

and prior experimental observations, but we are also able to qualitatively and quantitatively explain

behavior that was previously not understood.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magnetic drug targeting refers to the attachment of therapeu-
tics to magnetizable particles, and then applying magnetic fields
to concentrate them to disease locations such as to solid tumors,
regions of infection, or blood clots [1–8]. Though in some cases
the magnetizable particles can be introduced into the body
outside the blood flow, e.g. as in magnetic treatment of the inner-
ear where a small gel containing nano-particles is placed on the
round window membrane [9,10], usually ferromagnetic particles
are injected into a vein or artery [2,4,7,11–23]. Particles so
injected will circulate throughout the vasculature as the applied
magnetic field is used to attempt confinement at target locations.
Two main considerations arise from the in-vivo use of these
particles. First, the particles must be small enough to make it out
from the blood vessels into surrounding tissue (they should be no
larger than approximately 400–600 nm to extravasate out from

even ‘leaky’ tumor vessels [2,19,24–27]), and, more subtly and
crucially, they must be small enough to have sufficiently long
in-vivo residence times (larger particles are removed faster by the
mononuclear phagocyte system; in human clinical trials [4,15]
Chemicell’s 100 nm particles were shown to have 30 min plasma
residence times). Second, the magnetic force on these small
particles is minimal. Magnetic force scales with particle volume
[28], decreasing the size of a particle by a factor of 10 decreases
the magnetic force on it by 1000. Even with strong magnetic fields
(41 T) and high magnetic gradients (E0.5 T/cm), the forces on
ferromagnetic nano-particles remain extremely small, in the
range of pico-Newtons [28–30].

Thus a key issue in magnetic drug delivery is whether the applied
magnetic forces can compete with convective blood (drag) forces
that tend to wash particles away. The questions are: can particles be
confined to target regions against blood flow? In which blood
vessels and where do they concentrate? How deep within the body
can targeting occur? Past animal experiments [16,33–44] and phase
I human clinical trials [16,17,32] have observed the accumulation of
magnetic nano-particles by visual inspection, magnetic resonance
imaging, and histology studies. These have shown that magnetic
forces can concentrate micro- and nano-particles in-vivo near
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magnets, but the details of that concentration cannot be seen
experimentally. MRI and visual inspection do not have the resolution
to show in which vessels magnetic forces have exceeded blood drag
forces, and they certainly cannot show where in the vessel
accumulation is occurring. Equally, histology studies are carried
out after the animal has been sacrificed and blood flow stopped;
they speak only partially to where in the blood vessels the particles
might have been. Thus, in this paper, we address this issue via
simulations. We map the parameter space and characterize what
should happen in an idealized blood vessel in terms of applied
magnetic force strength and blood flow velocity. Our goal is to
forecast and characterize the type of behaviors that will occur.

We note that the usual back-of-the-envelope analysis is not
sufficient; it does not predict what is observed experimentally.
Consider the rat experiments shown in Fig. 1b. Here our
collaborators (Lubbe and Bergemann) used a 0.5 T, 5 cm long,
5 mm wide permanent magnet to focus 250 nm diameter iron-
oxide nano-particles. Even for a particle at a distance of just 1 mm
away from the magnet (just below skin depth), the magnetic force
on this particle (see Eq. (4) and [28,29]), including the effect of
particle magnetic saturation and using an exact solution [45] for
the magnetic field around the magnet, is only about
E1�10�13 N. By comparison, the Stokes blood drag force [46]
on the same particle, for the slowest measured 0.1 mm/s blood-
flow velocities in rat capillaries [47–49], isE7�10�13 N, a factor
of �7 greater. This simple comparison suggests that the field
gradient near the magnet cannot capture a 250 nm particle
against even the weakest blood flow in a rat. Yet in Fig. 1b the
dark spots where the particles have been focused can be clearly
seen. This focusing was carried out while the rats were alive and
their blood was flowing, and it has been repeated even with
100 nm diameter particles where the magnetic forces are
2.53
¼15.625 times smaller. Clearly, a crude comparison of

magnetic forces per particle to Stokes drag is insufficient to
match in-vivo behavior. This mismatch is also apparent in the
literature both for in-vitro and in-vivo experiments. In in-vitro

studies (e.g. [23,50]), particles were focused even when centerline
Stokes drag forces exceeded magnetic forces. In the in-vivo cases
(e.g. [11,38,51]), Stokes drag due to the slowest blood flow in the
animals/humans exceeded maximum magnetic forces yet particle
focusing was still observed.

The rough calculation above is deficient for two main potential
reasons. (1) The blood flow drag forces on the particle vary with
its position in the blood vessel. A particle at the vessel centerline
will experience a higher blood velocity and hence a higher drag
force, but a particle near the blood vessel wall will be surrounded
by a near zero blood velocity. This decrease in velocity is due to
the flow resistance provided by the vessel wall, the ‘no-slip’

boundary condition [27,52,53]. Thus a particle near the vessel
wall will experience a much smaller drag force and can
potentially be held by a much smaller magnetic force (see Fig. 2,
this effect is also noted in [30] for micro-channels). Alternatively
(2) the particles might agglomerate to some degree even though
they are typically engineered to minimize agglomeration
[2,6,19]. This will increase the magnetic force, which grows
with volume, much faster than the Stokes drag, which grows with
diameter, thus increasing trapping. In this paper we will focus on
examining the first issue in detail, as it is the next crucial
question. Item (2) is addressed approximately by considering
an agglomerated clump as simply a larger ‘super-particle’
(see Section S3.5 in the supplementary materials). Consideration
of agglomeration thus folds into our non-dimensional numbers
for size and force (discussed in Section 2.2). A more sophisticated
analysis of agglomeration will be carried out in future work.

This paper focuses on systematically characterizing the
behaviors of ferromagnetic nano-particles in a single idealized
blood vessel under the action of an applied magnetic force, blood
drag, diffusion within the blood, and transport of particles from
blood to surrounding tissue (modeled simply as diffusion, as in
[25,27]). It includes an ability to predict what happens in shallow
and deep, small and large blood vessels, and it resolves the
mismatch between experiments and the usual, but simplistic,
back-of-the-envelope centerline Stokes drag versus magnetic
force calculation described above. It is organized from the
simplest scenario to cases that include added features such as
spatially varying magnetic forces, blood pulsatility, curved vessel
geometry, and skin boundary conditions. These added features do
not qualitatively change the three types of nano-particle beha-
viors observed: blood velocity dominated, magnetic force domi-
nated, and boundary layer formation regimes. In addition, we do
not consider cases where the concentration of ferromagnetic
nano-particles is sufficiently high to obstruct the flow within a
blood vessel. We find that the observed nano-particle concentra-
tion behavior in in-vitro and in-vivo studies is correctly predicted
by a single three-parameter non-dimensional map (Figs. 5 and 7)
that delineates the blood velocity dominated, magnetic force
dominated, and boundary layer formation behaviors. Our sum-
mary result is simple to use and will enable a more systematic
design of future magnetic in-vivo drug delivery systems.

Simulating ferrofluid behavior, even in a single straight vessel,
is challenging. We created an in-house vessel-tissue-membrane
(VMT) numerical solver based on the Alternating Directions
Implicit (ADI) method [54–57]. The VMT solver was both more
accurate and 500 times faster than COMSOL (a general-purpose
commercially available partial differential equation solver often
used in the magnetic drug delivery literature, e.g. [50,58]), and it

Fig. 1. Verification of magnetic drug delivery from the body to the cellular scale in animal and human clinical trials. (a) Magnetic resonance (MR) image for a cancer

patient, magnetic nano-particle (ferrofluid) accumulation can be seen as lighter regions at the arrow tips (due to the MR extinction phenomena [31]) [4,15–17,32]. (b) Rat

studies: concentrated ferrofluid is visible under the skin [16,33]. (c) Ferrofluid concentrated in rabbit tumor micro-vessels (white arrow) [11,34]. (d) Magnetic nano-

particles at the membrane of mouse epithelial cells (e.g. black arrow) [35].
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was able to solve cases that COMSOL could not (see Section 2.4.2).
Using VMT we were able to solve all cases, though the most
challenging cases still took a long time (the case of mass Péclet
number equal to 1�108 in Section 3.3 took 48 hours). There are
ways to further improve VMT to make these cases run much faster
and this will be reported in future publications as part of our
effort to create a general purpose fast and accurate simulation
environment for magnetic drug delivery.

The current study is essential to better forecast what happens
in-vivo in shallow and deep blood vessels under varying
circumstances. Our modeling is the next needed major step: it
goes beyond a naive back-of-the-envelope calculation but is still
tightly focused on the issue of blood convection versus magnetic
forces. It necessarily cannot include all the complex details of
magnetic particle phenomena in-vivo, because much of that
behavior is still not well understood at a physiological and
physical level and therefore cannot yet be quantified mathema-
tically. For example, extravasation [2,19,25–27,59–61] is an active
research field in its own right and the mechanisms that drive it
are not yet fully known or characterized. Since extravasation
cannot be included in detail at our level of modeling, we represent
it here by a diffusion term (from blood to tissue) that is folded into
the effective diffusion coefficient (as is done in [25]). Even with
this limitation, our model still provides accurate and effective
results that are hard to attain any other way. It is necessary for
our larger effort to design controllers that will achieve deep tissue
magnetic drug targeting [29,62,63], and its ability to simply but
accurately predict in-vivo behavior will aid the research efforts of
the broader magnetic drug delivery community.

2. Simulation of nano-particle behaviors in blood vessels

We consider the scenario of a single blood vessel with an
inflow of blood and ferromagnetic nano-particles that are
actuated by an externally applied magnetic force. We find that

the nano-particles exhibit three distinct and specific behavioral
patterns: either velocity dominated (they are washed out of the
back of the blood vessel), magnetic force dominated (magnetic
forces overcome the blood vessel membrane and surrounding
tissue barriers), or they form a boundary layer at the blood/tissue
interface. Three non-dimensional numbers are required to
determine which behavior is occurring. These three numbers are:

The Non-Dimensional Magnetic Force Strength (the Magnetic-

Richardson Number): This number quantifies the ratio between the
applied magnetic force and the blood Stokes drag at the vessel
centerline. When this number is greater than unity then the magnetic
force is larger than the blood Stokes drag force at the vessel centerline.

The Renkin Reduced Diffusion Coefficient: This quantifies the
ratio between diffusion in the blood vessel membrane and
diffusion in the blood. If this number is smaller than unity then
particles in the blood vessel membrane diffuse much slower than
the same particles in blood.

The Mass Péclet Number: This number quantifies the ratio
between the maximum centerline blood flow velocity times the
average blood vessel width to the total particle diffusion
coefficient. When this number is much greater than unity then
particle convection occurs much faster than diffusion across the
blood vessel width.

2.1. Blood vessel and surrounding tissue: the idealized geometry

Fig. 2 shows the model geometry: an idealized straight blood
vessel contained by an endothelial layer next to an underlying
tissue layer. This set-up is a simplified version of the Krogh tissue
cylinder [25] and, similar to the Krogh cylinder, the tissue space is
a region between adjacent vessels. The vessel has an inlet at the
left-hand side and an outlet at the right-hand side. Blood and a
constant concentration of ferromagnetic nano-particles enter
from the left. A magnet is held below the blood vessel and
creates a downwards magnetic force.

Fig. 2. The simulated blood vessel geometry. The blood vessel is idealized as a straight channel. Blood and a constant concentration of magnetic nano-particles enter from

the left. The magnetic particles (black circles) within the blood vessel experience diffusion, migration under blood flow, and magnetic forces. Magnetic particles in

the surrounding endothelial and tissue layer experience diffusion and magnetic drift but no blood flow forces. The magnet can be a long distance from the blood vessel

(deep targeting) and here this is denoted by the break in the length bar on the right of the figure. Inset: The simulated domain around a blood vessel in deep tissue.
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2.2. Governing equations

We consider the three main forces acting upon the ferromag-
netic nano-particles. These include blood advection forces
induced by blood plasma convection [25,46,64], magnetic drift
induced by the applied magnetic field [65–67], and diffusion
forces induced both by Brownian diffusion [64] and the scattering
effect that colliding and shearing red blood cells have on the
nano-particles [68].

2.2.1. Magnetic forces

2.2.1.1. Maxwell’s equations for the magnetic field. Electromagnetic
fields are classically described by Maxwell’s equations [69]. We
specialize to the case of magneto-static equations that are
appropriate for stationary, or slowly varying, magnetic fields

r �
,
H ¼

,
j ð1Þ

rU
,
B ¼ 0 ð2Þ

,
B ¼ m0ð

,
Hþ

,
MÞ ¼ m0ð

,
Hþw,HÞ ð3Þ

Here
,
B is the magnetic field [T],

,
H is the magnetic intensity

[A/m],
,
j is the current density [A/m2],

,
M is the material

magnetization [A/m], w is the magnetic susceptibility, and m0 is
the permeability of a vacuum [4p�10�7 N/A2]. These equations
hold true in vacuum and in materials, for permanent magnets
(magnetization

,
M a0), and for electromagnets (current

,
ja0)

[28,66,70]. Through the human body, magnetic fields propagate
essentially unchanged because the magnetic susceptibility of
tissue is close to zero (wE10�6

�10�4 [71,72]). In contrast, the
magnetite cores (e.g. Fe3O4) of ferromagnetic particles have
magnetic susceptibilities 5–7 orders of magnitude higher than
that of tissue (wE20), therefore these particles are strongly
influenced by magnetic fields [28,66,70].

2.2.1.2. Magnetic forces on a particle. A single ferromagnetic par-
ticle in a magnetic field will experience a force that depends upon

the magnetic field and field gradient around it [62,66,73,74]

,
F M ¼

4pa3

3

m0w
ð1þw=3Þ

d
,
H

d
,
x

#T
,
H ¼

2pa3

3

m0w
ð1þw=3Þ

rð9
,
H92
Þ

2
4 ð4Þ

Here a is the radius of a nano-particle [m], r is the gradient
operator [with units 1/m], and the superscript T denotes matrix
transpose. For simplicity, the hydrodynamic radius is considered
to be the same size as the magnetic core radius (the case where
they differ is discussed in Section S3.8). The first relation is more
familiar and clearly shows that a spatially varying magnetic field
(d

,
H=d

,
xa0) is required to create a magnetic force. The second

equivalent relation states that the magnetic force on a ferromag-
netic particle is always from low to high magnetic fields and is
proportional to the gradient of the magnetic field intensity
squared. The two relations are equal by the chain rule and it is
evident that the magnetic force is also proportional to the particle
volume.

If the applied magnetic field is sufficient to saturate the nano-
particle, then ½d

,
H=d

,
x�T

,
H in Eq. (4) is modified to ½d

,
H=d

,
x�T

,
Msat

where
,
Msat is the saturated magnetization of the particle. Since

,
Msat lines up with

,
H , this does not change the direction of the

force, only its size. Thus this case is considered within our
framework simply by modifying the size of the magnetic force
used.

As shown in Fig. 3, when the magnet is held at a long distance
compared to the blood vessel width, we can assume that the
magnetic force is constant in space throughout the blood vessel
width and length. This negates the need to solve the magneto-static
equations; it is true to within a few percent even for wide blood
vessels near magnets, and it does not qualitatively change the
resulting nano-particle behaviors (Section S3.3 in Supplementary
Information analyses the case where the magnetic force does vary in
space according to the magneto-static equations).

For the rat experiment shown in Fig. 1b, the force acting upon a
single iron oxide 125 nm radius particle at a 1 mm depth is given
by Eq. (4) to be FME0.1 pN. (Here the 0.5 T permanent magnet
produces a magnetic field intensity of 3.7�105 A/m and a

Fig. 3. Magnetic forces are usually constant within the tissue-vessel system. Here even though a magnet is held close to the blood vessel (at a distance that is less than its

length) the resulting magnetic force within the blood vessel is still essentially constant: the maximum error of 9Fconst�Fexact9/9Fexact9o10%.
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magnetic spatial gradient of E1�107 A/m2 at a distance of
1 mm, the particles had a magnetic susceptibility of roughly
wE20 and saturated at

,
Msat � 448kA=m [23].)

2.2.1.3. Magnetic forces on a concentration of particles (on a ferro-

fluid). A ferrofluid is composed of many magnetizable nano-
particles and is essentially super-paramagnetic. Ferrofluids are
strongly magnetized in the presence of an external field and then
lose their magnetization once the external field is removed due
to rapid random particle reorientation [28,66,70]. Neglecting
particle-to-particle interactions, which are small due to particle
reorientations and anti-agglomeration coatings [2], the magnetic
force on each elemental volume of ferrofluid is given by [29,63]

,
F M ¼

2pa3

3

m0w
ð1þw=3Þ

Crð9
,
H92
Þ ð5Þ

where C is the concentration of the particles [number/m3].

2.2.1.4. Magnetic drift velocity: magnetic forces versus Stokes drag.

When the magnetic force of Eq. (4) is applied to a particle, it will
accelerate the particle in the direction of this force until it reaches
an equilibrium velocity

,
V R relative to the surrounding blood

(or surrounding tissue). The opposing Stokes drag force on a
spherical particle is given by [27,64]

,
F S ¼ 6pa Z,V R ð6Þ

where Z is the dynamic viscosity of blood [kg m/s]. When the
Stokes drag force first equals the applied magnetic force, then the
particle has reached its equilibrium relative velocity (magnetic
velocity)

,
V R ¼

a2

9Z
m0w
ð1þw=3Þ

rð9
,
H92
Þ ¼ krð9

,
H92
Þ ð7Þ

where k¼ a2m0w=9Zð1þw=3Þ is the magnetic drift coefficient. This
relative velocity adds to the fluid velocity (Eq. (8) below) and
together they give the net convection plus magnetic drift velocity.
(Eq. (6) does not include wall effects that modify the drag force on
a particle within a few particle diameters of an external
obstruction [75,76]. Eq. (7) also does not include magnetic parti-
cle-to-particle interaction forces. For an initial discussion of the
effects of agglomeration see Section S3.5 in Supplementary
Information or [77–79].)

Within the membrane and tissue layers, Stokes drag is not the
only limitation to the maximum velocity induced by magnetic
forces. There are many obstacles in the form of cells and
extracellular matrix components that inhibit particle movement
[25,27,60,80]. These obstacles lead to an analogous magnetic drift
coefficient for the membrane and tissue layers. Einstein’s relation
assumes that these obstacles also inhibit diffusion in a similar
manner [25,27]. Therefore the analogous magnetic drift coeffi-
cient for the membrane and tissue layer is generated by scaling k

by the Renkin reduced diffusion coefficient described in Section
2.4.3 [25].

Using the same rat example as before (Fig. 1b) and a blood
viscosity of 0.003 Pa s, the magnetic drift velocity of the 250 nm
diameter iron oxide particles in blood is then VRE1.4�10�5 m/s,
i.e. it is 14 mm/s.

2.2.2. Advection forces

The fluid velocity profile in a channel is curved—it is highest at
the centerline and is zero at the walls due to the no-slip boundary
condition. For Newtonian fluids in straight channels at steady
state, this curved profile is parabolic [64,81]. Blood, however, is a
non-Newtonian fluid due to the presence of the clotting protein
fibrinogen which causes red blood cells to aggregate at low shear

rates. This creates a blunted flow profile known as plug flow [25].
Such a profile can be fit empirically by [82]

,
V B ¼ VBmax 1�

r

R

� �x� �
ð8Þ

where
,
V B is the velocity in [m/s], VBmax is the maximum

centerline velocity [m/s], r is the radial location [m], R is the
radius of the vessel [m], and x is a constant for a particular profile.
A value of x¼9 is usually chosen to fit experimental data of the
cardiac cycle [82]. This equation removes the need to solve the
Navier–Stokes equations for the blood flow profile. In rat vessels
the smallest centerline blood velocity is on the order of 0.1 mm/s
[47–49], in humans it is around 0.5 mm/s [25].

2.2.3. Diffusion forces

There are two main types of particle diffusion that occur
within a blood vessel: Brownian thermal motion and particle
scattering due to collisions with blood cells.

2.2.3.1. Brownian diffusion. Brownian motion refers to the random
motion of particles under the action of thermal fluctuations and is
quantified by a diffusion coefficient [25,64]

DB ¼
kBT

6pZ a
ð9Þ

that relates the diffusive flux to the concentration gradient of the
particles. Here kB is the Boltzmann constant and T is the absolute
temperature. For 250 nm diameter particles in blood at body
temperature (37 1C), the diffusion coefficient is DBE6�10�13

m2/s [19,21,62,66].

2.2.3.2. Diffusion from blood cell scattering. Collision of blood cells
with nano-particles causes the particles to scatter and can be
modeled as additional diffusion [68]. The scattering diffusion
coefficient is on the order of DSE10�11

�10�10 m2/s and can
therefore be greater than the diffusion due to thermal motion. The
total particle diffusion is the sum of thermal and scattering
diffusion hence DTot¼DB+DS.

2.2.4. Summary of governing equations and boundary conditions

The concentration of ferrofluid at each location is a function of
time: it increases when the flux of particles to that location is
positive and decreases when it is negative [64,75]. The flux is the
summation of the three effects discussed above: diffusion,
convection by blood flow, and magnetic drift. Thus

@

@t
Cðx,y,tÞ|fflfflfflffl{zfflfflfflffl}
FERRO FLUID

CONCENTRATION

¼�rU �DTotrC|fflfflfflffl{zfflfflfflffl}
DIFFUSION

þ C
,
V BðyÞ|fflfflffl{zfflfflffl}

BLOOD CONVECTION

þCkrð9
,
Hðx,yÞ92

Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
MAGNETIC DRIFT

2
64

3
75 ð10Þ

where
,
V B is the blood flow velocity. Considering a constant

magnetic force acting only in the negative y-direction and the
specific blunted blood flow profile of Eq. (8), the concentration
can then be described by the partial differential equation

_C ðx,yÞ ¼ �rU �DTotrCþC VBmax 1�
y

R

� �9
� �

,0

� �
þCð0,�krH2Þ

� �
ð11Þ

stated in two spatial dimensions, in x and y. The concentration
inside the tissue is defined more simply by the equation

_C ðx,yÞ ¼ �rU½�DT ,TotrCþCð0,�kTrH2Þ� ð12Þ

Boundary conditions are required to complete the model. At
the blood flow inlet, a constant concentration of magnetic
particles is imposed (see also Fig. 2). At all external boundaries
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of the tissue-vessel system, the normal diffusive flux is set to zero
(n̂UDrC ¼ 0) enforcing the requirement that the total flux at those
boundaries is exactly the convective flux (so that ferrofluid
correctly convects out of the vessel outlet with the blood flow).
The interior boundaries between the vessel and endothelial
layer, and the endothelial layer and tissue, satisfy two conditions:
the ferrofluid concentration is continuous across each interface
(no concentration discontinuities), and the ferrofluid that leaves
one domain enters another (no ferrofluid is lost or created).

Since in magnetic drug delivery a magnet is often held outside
the skin, and nano-particles then concentrate closest to it but do
not leave the body, it can be desirable to include a ‘skin’ boundary
condition that prevents nano-particles from leaving the tissue
(this would be placed at the bottom of the tissue layer in Fig. 2).
We do not consider this added feature for the majority of the
paper because we are interested in ferrofluid behavior in,
immediately around, and between blood vessels. Therefore we
permit the nano-particles to leave this focused inspection domain.
Skin introduces a new complication, the pile-up of nano-particles
in the tissue next to it, and it can distort the behavior around
blood vessels in a way that depends on tissue thickness.
It necessitates a 4th non-dimensional number thus requiring a
4-dimensional visualization of the prototypical behavior of
ferrofluids. A skin boundary condition is included in Section
S3.6 in Supplementary Information and correctly causes ferrofluid
to pile-up near the magnet.

2.3. Range of physical parameters

2.3.1. Magnetic parameters

Magnetic nano-particles are usually defined as a moiety
between 1 nm and 1 mm that contain a magnetic core [2]. The
magnetic core is usually composed of magnetite or maghemite
[2,4,12,21,23,50,83–85] but other exotic materials can be used
including cementite [44,86]. For in-vivo studies the size of particles
used ranges from E10 nm (small carriers) [21] to 5 mm (large
carriers) [44,86]. Smaller particles (sizeo25 nm) usually exhibit
super-paramagnetic behavior that helps reduce agglomeration
when the magnetic fields are removed [2]. Larger particles
(size460 nm) benefit from not passing through normal fenestrated
capillaries where the pore cutoff size is approximately 60 nm [2,19].

The magnetic fields generated by external magnets in in-vitro

studies have ranged anywhere fromE70 mT [1] tor1.5 T [3,50].
Animal trials have had ranges between 0.1 and 1.5 T
[12,16,21,22,38]. The FDA (food and drug administration) has
approved magnetic strengths up to 8 T for use with humans [2]
and human clinical trials have utilized 0.2–0.8 T magnet field
strengths [4,15-17]. Most often permanent magnets have been
used with sizes ranging from tens of millimeters to tens of
centimeters [1,4,12,44,50,86]. Occasionally electromagnets were
utilized [3,84]. The distance of particles from magnets has ranged
from E1 mm to E12 cm in the literature [17,23,38,86], but we
consider up to 30 cm distances to examine the possibility of deep
tissue magnetic targeting [29,62,63].

2.3.2. Advection parameters

In humans, typical centerline blood velocities range from
0.5 mm/s in capillaries to the largest value of 40 cm/s in the aorta
[25,27,68]. Average vessel diameters vary between 7 mm for
capillaries and 3 cm in the vena cava [2,25,68].

2.3.3. Diffusion parameters

Particle size and vessel radii impact the diffusion of nano-
particles. The largest diffusion coefficients occur in large vessels
(arterioles and arteries) where cell scattering effects are high and

with small particles where Brownian diffusion is large. The
smallest diffusion coefficients occur in small vessels (capillaries)
where scattering effect are negligible and with large particles
where Brownian diffusion is small. The typical range in humans of
total particle diffusion coefficients is between 1�10�14 and
6�10�10 m2/s [25,68].

2.4. Non-dimensional governing equations: the 3 key numbers

Non-dimensionalization of the mathematical model is crucial
for mapping out ferrofluid behaviors; it reduces the number of
parameters from the 16 in Table 1 to three key independent
numbers and it prevents repeatedly solving self-similar cases that
have differing dimensional parameters but share the same
behavior [75]. Non-dimensional numbers achieve this saving by
capturing the ratios between competing physical effects thus
illustrating which effects win when and by how much.

We non-dimensionalize Eq. (10) by choosing a characteristic
length scale (the width of the blood vessel dB), a characteristic
velocity (the maximum centerline velocity in the blood vessel
VBmax), and a characteristic concentration (the nano-particle
concentration at the blood vessel inlet Co), and then normalize
each variable with respect to these three characteristic quantities.
Section S1 in Supplementary Information defines all the resulting
non-dimensional variables and provides a detailed derivation of
the final equations. After non-dimensionalization, Eq. (10) becomes

@CB

@t
¼�rU �

1

Pe
rCBþð

,
V Bþð0,�CÞÞCB

� �
ð13Þ

where CB is now the non-dimensional concentration of nano-
particles in the blood and

,
V B is the non-dimensional blood

velocity. Eqs. (14) and (15) are the non-dimensional analogs for
transport of magnetic particles in the endothelial membrane and
in tissue, respectively

@CM

@t
¼�rUD � 1

Pe
rCMþð0,�CÞCM

� �
ð14Þ

@CT

@t̂
¼�rUDT �

1

Pe
rCTþð0,�CÞCT

� �
: ð15Þ

Table 1
Human physical parameters encountered in magnetic drug delivery. (Essential

quantities needed for the non-dimensionalization are bolded.).

Parameter Symbol Parameter range

Particle radius a 1 nm – 5 mm

Distance from magnet d 1 mm – 30 cm

Magnetic field strength

(or magnetic intensity)
9
,
B9 0.1 – 1.5 T

9
,
H9 8�104 – 1.2�106 A/m

Magnet length LM 1 – 30 cm

Magnetic drift velocity 9
,
V R9 9�10�15 – 3.8�10�4 m/s

Magnetic force on a particle 9
,
F M9 5�10�25

�1.1�10�11 N

Maximum centerline blood
velocity

VBmax 0.5 mm/s – 40 cm/s

Vessel diameter dB 7 lm – 3 cm
Blood viscosity Z 0.003 Pa s

Centerline stokes drag on a
particle

9
,
F S9 3�10�14 – 1.1�10�7 N

Temperature T 310 K (body temperature)

Brownian diffusion coefficient DB 1�10�14 – 1�10�12 m2/s

Scattering diffusion coefficient DS 3.5�10�12 – 6�10�10 m2/s

Total diffusion coefficient
(in blood)

DTot 1�10�14 – 6�10�10 m2/s

Diffusion coefficient
(in membrane)

DM 0 (if particles larger than pores)
– 1.5�10�12

Diffusion coefficient
(in tissue)

DT 0 (if particles larger than
interstitial spaces) – 1.2�10�14
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This normalized model is completely parameterized by 4 non-
dimensional numbers: the magnetic-Richardson number W, the
mass Péclet number Pe, the Renkin reduced diffusion coefficient D
for endothelial membrane diffusivity compared to blood, and the
Renkin reduced diffusion coefficient DT for the diffusivity of
tissue compared to that of blood. The thin endothelial membrane
either effectively acts as a barrier to nano-particles or not, thus it
suffices to vary either D (when the membrane limits transport) or
DT (if tissue limits transport). Since there is little need to vary
both, 3 non-dimensional numbers are sufficient to completely
characterize nano-particle behavior.

2.4.1. Magnetic-Richardson number

Based on the Richardson number [64,87], we define a
magnetic-Richardson number as the ratio of the magnetic force
to the Stokes drag force that would act upon a single stationary
particle at the centerline of a blood vessel. The magnetic-
Richardson number is thus the ratio

C¼
Magnetic force at centerline

Stokes drag force at centerline
¼

,
F M
,
F S

					
					

¼
6pa Z krð9

,
H92
Þ

6pa Z VBmax
¼

,
V R

VBmax
ð16Þ

As the magnetic-Richardson number increases to a value
greater than unity, the magnetic forces experienced by a particle
are much higher than the drag forces created by the blood
velocity. As the number decreases below unity, the blood velocity
forces dominate.

For the smallest rat blood vessels, the magnetic force upon an
iron oxide 250 nm diameter particle at 1 mm depth was 0.1 pN.
The Stokes drag force on that same particle in a rat blood vessel
with a centerline velocity of 0.1 mm/s is 0.7 pN. Therefore the
magnetic-Richardson number in this case is W¼0.14.

2.4.2. Mass Péclet number

Here the mass Péclet number [25,64,81] is defined as the ratio
of the blood vessel width multiplied by the maximum centerline
blood velocity to the total diffusion coefficient of the nano-
particles within the vessel. At large Péclet values, the blood
advection of nano-particles far exceeds their diffusion

Pe¼
Blood vessel width�Maximum blood velocity

Total diffusion coefficient of particles
¼

dBVBmax

DTot

ð17Þ

Continuing with our rat example, with a centerline velocity of
0.1 mm/s (the slowest measured in a rat capillary), a vessel
diameter of dBE6 mm, and a nano-particle in blood diffusion
coefficient of DTotE6�10�13 m2/s, the mass Péclet number is
PeE1000.

2.4.3. The Renkin reduced diffusion coefficient

The behavior of semi-permeable membranes, such as the
blood vessel wall, can be modeled by the Renkin reduced diffusion
coefficient [25,27]. This coefficient is the ratio of the diffusion
coefficient in the membrane to the diffusion coefficient in the
blood.

D¼ Diffusion coefficient in membrane

Total diffusion coefficient in blood
¼

DM

DBþDS
¼

DM

DTot
ð18Þ

As this ratio decreases towards zero, the ferrofluid increasingly
remains within the blood vessel. As the ratio increases towards

unity, the ferrofluid begins to leave the vessel and enters the
membrane. When this ratio is one, the ferrofluid behaves
as if the vessel wall did not exist. With this number the
permeability of the endothelial membrane can be varied in a
simple manner.

If pore diameters of a membrane are known, the following
equations can be used to estimate the ratio of blood to tissue
diffusion coefficients

DM

DB
¼ ð1�aÞ2ð1�2:1044aþ2:089a3�0:948a5Þ, a¼ a

rpore
ð19Þ

where rpore is the average radius of the pores in a membrane
[25,27,88]. When a¼125 nm as before, for normal endothelial
pores of size rporeE60 nm in rat capillaries [47–49], D� 0, while
in leaky blood vessels where rporeE600 nm, D� 0:36.

Not only is the ratio of membrane to blood diffusion
coefficients important, but the ratio of tissue to blood diffusion
coefficients impacts particle behavior. Similar to the semi-
permeable vessel wall, tissue diffusivity is highly dependent
upon particle size and the extracellular spacing. Therefore it is
necessary to vary this number as well, and this is accomplished in
Section S3.7.

DT ¼
Diffusion coefficient in tissue

Total diffusion coefficient in blood
¼

DT

DTot
ð20Þ

Tissue diffusivity is usually greater than the membrane
diffusivity but is typically less than the total blood diffusivity. In
the rat example, for the same a¼125 nm particle size and a tumor
extracellular space of 1 mm, DT � 0:56 [25].

2.5. Numerical implementation

Magnetic particle behavior was simulated by using both the
commercial multi-physics package COMSOL (www.comsol.com)
and by an algorithm designed specially to meet the significant
challenges posed by the Vessel-Membrane-Tissue (VMT) convec-
tion diffusion problem. The second method is based on a
combination of: (1) a graded mesh to adequately resolve thin
boundary layers; (2) the Alternating Directions Implicit (ADI)
method [57]; (3) an on-and-off fluid-freezing methodology that
allows for efficient treatment of the multiple-time scales that
exist in the problem; and (4) a change of unknowns that enables
evaluation of steady states in tissue and membrane layers
through a highly accelerated time-stepping procedure [54–57].
The resulting linear-time unconditionally stable numerical meth-
odology, called the VMT solver, is both significantly more accurate
and up to four orders of magnitude faster than the COMSOL
simulation, in addition to being capable of resolving thin
boundary layers for cases where COMSOL fails. For example,
considering the case of Pe¼1000, W¼0.0001, D¼ 0:01, DT ¼ 0:1,
on a Intel Xenon quad core 3.1 GHz processor with 80 GB of
available memory, COMSOL obtained a solution within 48 hours
while our VMT solver obtained a steady state solution with 5
digits of accuracy in only 5 min and using 32.7 MB of memory. For
another, much more difficult case using Pe¼10000, W¼0.00001,
D¼ 0:001, DT ¼ 0:01, our VMT solver obtained a steady state
solution with 5 digits of accuracy in under 8 min and using just
98.3 MB of memory while COMSOL was unable to provide a
solution.

Full details of the numerical methodology (with additional
accuracy and computing improvements resulting from use of the
novel Fourier Continuation-Alternating Directions method [89])
used in the VMT solver will be presented in a forthcoming
contribution [90].
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3. Simulation results

3.1. Mapping the three-parameter space

Each simulation of Eqs. (13)–(15) calculated the time sequence
and ending equilibrium concentration of ferromagnetic nano-
particles as a function of location in blood and tissue. From this
concentration data, cross-sectional plots spanning the diameter of
the tissue-vessel system were generated. By varying the three
non-dimensional numbers, three distinct particle behaviors were
observed. These behaviors were then delineated on a plot of
Renkin reduced diffusion coefficient versus magnetic-Richardson
number for a given mass Péclet number (Fig. 5). Péclet number
dependence is subsequently shown in Fig. 7.

3.2. The three prototypical behaviors

The three prototypical behaviors are shown below with an
early, intermediate and steady state time snapshot.

3.2.1. Magnetic force dominated behavior

In this regime the applied magnetic forces dictate particle
behavior. Here the magnetic forces control the transport of the
particles irrespective of the blood drag forces. It turns out that
when the magnetic force is dominant and is constant, the
equilibrium concentration will approach a constant value
throughout the tissue-vessel system being considered. The
constant downward magnetic force pulls the nano-particles
from the blood vessel inlet downwards into the tissue and out
the bottom, and any transient concentration gradients are
smoothed out by diffusion. Here the maximum concentration
never exceeds the inlet concentration, as shown in Fig. 4(A). This
is a reasonable result since we are assuming the blood vessel sees
a constantly replenished supply of nano-particles (from the rest of
the body). The applied (approximately constant) magnetic force
and diffusion then serve to distribute that concentration of nano-
particles equally throughout the region of tissue below the blood
vessel and above the magnet. Here the applied magnetic field
does not concentrate particle concentration in the blood vessel or
surrounding tissue.

3.2.2. Velocity dominated behavior

In velocity or Stokes drag dominated behavior the blood drag
force on a stationary particle far exceeds the magnetic and
diffusion forces. Here the blood velocity washes the particles out
the back of the vessel before magnetic forces have had a chance to
affect them, as shown in Fig. 4(B). Since the inlet of the vessel is
always refreshing the fluid flow with the inlet concentration, the
overall concentration in the blood remains near that of the inlet
concentration. Particle concentration in the tissue is much lower
even for long times but eventually, by diffusion, reaches a steady
state where the concentration in the tissue is equal to that in the
blood vessel. This case acts as if there is no magnet at all since
blood forces far exceed its effect. Due to the speed of each effect,
different time scales for the ‘early’ and ‘middle’ frames were
chosen in Fig. 4 so that the middle panels could illustrate the
intermediate concentrations of each behavior.

3.2.3. Boundary layer formation

The boundary layer regime occurs when the magnetic and
blood drag forces are comparable; it is the most interesting case.
Fig. 4(C) illustrates this case. In this regime, the nano-particles
build-up near the vessel wall, either inside the vessel where the
blood velocity is near zero and/or in the membrane next to
the vessel build-up (by diffusion). The concentration elsewhere in

the blood essentially remains at the set inlet concentration. In this
case the concentration of nano-particles near the vessel wall can
exceed the inlet concentration by double or higher. Compared to
the previous velocity dominated behavior, which also exhibits a
slight build-up of particles along the vessel wall, we define the
ferrofluid behavior as forming a boundary layer when

CB,vessel�wallZ1:01 CB,inlet ð21Þ

In addition, it is this case which has the potential to increase
the nano-particle concentration within the tissue to above the
unit (blood inlet) concentration, Fig. 4C (ii). It is this boundary
layer regime that illustrates how a focusing of nano-particles is
possible even if the magnetic force is substantially smaller than
the centerline drag force (as in the rat example of Fig. 1b).

3.3. Summary of behaviors under non-dimensional number

variations

For ferromagnetic nano-particles under the action of diffusion,
blood convection, and a magnetic force in a straight idealized
blood vessel surrounded by tissue, we find three behavior
regimes: magnetic dominated, blood velocity dominated, and a
boundary layer formation regime. Only in the boundary layer case
is the ferrofluid concentrated by the applied magnetic field
(Fig. 4C). In the magnetic and velocity dominated cases it escapes,
either out the bottom of the tissue or through the blood vessel
outlet. In these two cases it is only the constant re-supply of
ferrofluid at the vessel inlet that provides the steady state
ferrofluid concentrations shown in Fig. 4A and B.

For the simulation results below, the behavior of any case is
grouped into one of these 3 regimes by analyzing the equilibrium
concentration profile across the vessel cross-section. If the steady
state cross-sectional concentration is uniformly equal to the inlet
concentration then the behavior is classed as magnetic domi-
nated; if the steady state vessel wall concentration build-up is less
than +1% of the inlet concentration then it is classed as velocity
dominated; and if the cross-sectional concentration exhibits high
vessel wall concentration build-up then it is classed as boundary
layer formation. In all cases, this classification exactly matches the
qualitative classification based on transient and equilibrium
behavior shown in Fig. 4.

According to the range of dimensional parameters given in
Table 1, the three key non-dimensional numbers were corre-
spondingly varied between 10�8 and 30 for the magnetic-
Richardson number, between 10�4 and 1 for the Renkin reduced
diffusion coefficient, and between 30 and 1�108 for the mass
Péclet number. To examine the behaviors at a constant mass
Péclet number, simulations were conducted over a logarithmi-
cally-spaced grid of 7 magnetic-Richardson and 5 Renkin
numbers. Then, to determine the dependence on the Péclet
number, the Péclet number was varied over 7 values while the
Renkin number was held constant and the Richardson number
was varied. This provided a general understanding of the non-
dimensional number space. To precisely identify the locations of
delineations between the 3 behavioral domains, simulations were
completed over two fine grids. First, a fine grid of 10 magnetic-
Richardson, 1 Renkin, and 9 Péclet numbers was used. Then, a grid
of 13 Renkin, 6 magnetic-Richardson, and 7 Péclet numbers was
used. In total, this yielded 720 cases that were simulated and
analyzed. Figs. 5 and 7 below summarize the results and show the
behavior delineations. Then random cases were simulated to
verify the defined delineation regions.

Fig. 5 illustrates the behavior trends at a mass Péclet number
of 333 (i.e. the convection of the nano-particles is 333 times faster
than their diffusion through the blood vessel width). It shows the
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regions in which the three behavior types occur. The velocity
dominated region occurs at low magnetic-Richardson numbers
where the Stokes drag forces are much larger than the magnetic
forces. Meaning, there is a cutoff value at which the Stokes drag
forces are able to overcome the magnetic forces sufficiently so
that concentration build-up within the vessel is negligible. In
contrast, at moderate and higher magnetic-Richardson numbers,
the Stokes drag forces are not as effective and a highly
concentrated boundary layer develops. However, as the Renkin
reduced diffusion coefficient is increased, this ferrofluid boundary

layer region occurs less readily, because any build-up of particle
concentration in the endothelium can more easily diffuse out into
the vessel and be swept away by blood convection. Thus the
velocity dominated behavior will also occur in circumstances
where the membrane provides a weaker barrier to particle
movement described by a larger Renkin reduced diffusion
coefficient. This is shown by the curving gray line in Fig. 5. But,
at near unity Renkin reduced diffusion coefficients, the diffusion
coefficients in the blood, endothelial membrane, and tissue are
approximately the same and the particles see no difference

Fig. 4. The three prototypical behaviors: (A) magnetic force dominated case (W¼10�3, D¼1), (B) velocity dominated case (W¼10�5, D¼10�3), and (C) boundary layer

formation (W¼10�2, D¼10�3). (A) The magnetic force dominated case shows a cross-sectional concentration of the magnetic nano-particles for three times at t¼0.03 s

(early), 0.3 s (middle), and at equilibrium, at Pe¼333. Particles are pulled towards the magnet and out through the bottom of the tissue resulting in a constant

concentration equal to the blood inlet concentration. Here the tissue diffusion is set to equal the diffusion in the endothelial membrane. (B) Velocity dominated shows a

cross-sectional concentration of the magnetic nano-particles for three times at t¼0.03 s (early), 18 s (middle), and at equilibrium, at Pe¼333. Particles are washed out

before they generate a significant boundary layer along the vessel wall. At long times diffusion equilibrates the concentration between tissue and blood. Here the tissue

Renkin number is set at DT ¼ 10D which means it is ten times as easy for particles to diffuse through tissue than through the endothelial membrane. (C) Boundary layer

formation shows a cross-sectional magnetic nano-particle concentration for three times at t¼0.03 seconds (early), 30 seconds (middle), and at equilibrium, at Pe¼333.

(i) The steady state profile for W¼10�2. Here the particle concentration is shown on the same linear scale as in other time snap shots. (ii) The steady state profile for a

higher magnetic-Richardson number, for¼10�1. Here both the particle conentration and the cross-sectional plot are shown on a log scale. In both boundary layer

cases (W¼10�2 and 10�1) the particles build-up along the vessel membrane on both the vessel side and within the membrane. The boundary layer forms very rapidly. In

(ii) the membrane particle concentration is sufficiently high to cause a concentration in the tissue greater than the vessel inlet concentration. In both (i) and (ii) the tissue

Renkin number is set at DT ¼ 10D which means it is ten times as easy for particles to diffuse through tissue than through the endothelial membrane.
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between these three media leading to magnetically dominated
behavior where magnetic forces pull particles downwards
through the membrane and tissue towards the magnet.

Fig. 6 illustrates the shift in behavior regimes with changing
mass Péclet number. The changing Péclet number moves the
behavior regimes on the magnetic-Richardson and Renkin axes.
As the mass Péclet number decreases, i.e. as particle diffusion
increases compared to their convection, the boundary between
the velocity dominated and the boundary layer region shifts
towards larger magnetic-Richardson numbers where larger
magnetic forces are required to overcome the Stokes drag forces.
As the particles are able to move more freely due to higher
diffusion effects, they do not easily concentrate within the vessel
and require larger magnetic forces to retain them near the vessel
wall. In addition, it can be seen that at low mass Péclet numbers
(o50), the magnetic dominated region begins to grow in size and
stretch to lower Renkin reduced diffusion coefficients.

The shift in the velocity-dominated/boundary formation
behavior delineation, l, due to a mass Péclet number change
can be approximated by a power law fit lE0.0032
Pe�0.6

�1.3�10�7 that has an R2 value of 0.99998 (Fig. 7). As
the mass Péclet number increases, the delineation shifts to
smaller magnetic-Richardson numbers. At a mass Péclet number
of Pe42.1�107, l¼0 and the characteristic behavior will be
boundary layer formation. This suggests that at very large mass
Péclet numbers (at very high blood velocities in big vessels) the
nano-particles will build-up along the blood vessel even with very
small applied magnetic forces. This is because we assume that the
particles continue to be supplied at a constant concentration at
the inlet of the blood vessel (Fig. 2) from the rest of the body. As
they flow quickly to the right, the downward magnetic force
brings them to the blood vessel wall predicting a sharp boundary
layer due to the now, in comparison, small effect of diffusion. In
practice when there are very large blood velocities, only few

Fig. 5. Magnetic nano-particle behaviors as a function of the magnetic-Richardson and Renkin reduced diffusion coefficient non-dimensional numbers. The mass Péclet

number was held constant. Three regions are shown: the magnetic dominated region at the top (the thin solid blue region); the velocity (Stokes drag) dominated region on

the left (dashed lines region); and the boundary layer formation region on the right (wavy lines region). Notice that boundary layer build-up behavior is still possible even if

the magnetic force is just 0.01% of the Stokes drag force at the vessel centerline, i.e. at CZ0.0001. The boundary between the velocity and boundary layer build-up regions

is diffuse as shown schematically by the thickness of the fuzzy gray line separating them.
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Fig. 6. Behavioral dependence upon mass Péclet number. As the mass Péclet number decreases, the delineation between behavior types shifts to the right (to larger

magnetic-Richardson numbers). In addition, at lower mass Péclet numbers, the magnetic dominated region increases in size towards lower Renkin reduced diffusion

coefficients.

Fig. 7. The delineation of the boundary between the velocity dominated and boundary layer formation regimes is denoted by l (left panel, it is measured along the

magnetic-Richardson axis at a Renkin coefficient of 10�3) and it depends on the mass Péclet number (right panel). The stated equation provides a convenient fit of l versus

Pe for the curve shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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nano-particles immediately near the blood vessel wall will be
captured during the short time that the nano-particles remain
within the vessel before they flow out the back. This leads to a
very thin boundary layer formation of only a few particles at high
mass Péclet numbers.

Fig. 8 can be used to determine the blood vessel concentration
(CB,vessel-wall) for a given magnetic-Richardson number and mass
Péclet number. The blue curves correspond to constant mass
Péclet numbers and illustrate the blood vessel wall concentra-
tion’s dependence upon magnetic-Richardson number. The con-
centration cutoff requirement of 4 +1% (Eq. (21)) is depicted by a
red line, while an alternate equally valid cutoff requirement of
4 +10% is depicted by a dotted orange line. While Eq. (21) was
used to define the behavior boundary delineation, a larger blood
vessel wall concentration could easily be chosen and determined
by Fig. 8.

Figs. 5–8 can be used to quickly look up the expected behavior
of any magnetic drug focusing experiment. For an in-vivo setting,
from a knowledge or expectation of the experimental parameters,
the magnetic field strength, the magnetic field gradient, particle
size, considered blood vessel depth, width, blood centerline
velocity, and membrane pore size, the designer should compute
or estimate the magnetic-Richardson number (Eq. (16)), the
Renkin reduced diffusion coefficient (use the smaller of the two
Renkin numbers between the endothelial membrane (18), (19)
and the tissue (20)), and the Péclet number (Eq. (17)). Then look
up the resulting expected behavior in Figs. 5 or 6. (Use the l fit
equation of Fig. 7 to find the location of the boundary between the
velocity and boundary layer formation cases if your Péclet
number is not one of those shown in Fig. 6.)

The analysis above predicts experimental results in the
literature extremely well, for both in-vitro and in-vivo cases (see
the next section). However, it still treats an idealized case.
Additional model features, such as pulsatile blood flow, curved
blood vessels, particle agglomeration, and skin boundary condi-
tions are included in Supplementary Information Section S3.
Except for the effect of skin, which can significantly distort the
ferrofluid concentration profile for blood vessels very near it, we
find that none of these effects make a substantial difference – the
behavior is still magnetic dominated, velocity dominated, or
forms a boundary layer essentially as outlined in Figs. 5 and 7.

4. Comparison with experiments

Several experimental studies currently published ranging from
in-vitro glass vessels to in-vivo animal targeting have been studied
and compared to our predicted behavior. Each experiment can be
compared against Figs. 5–8. We find excellent agreement between
prior published experimental observations and our predictions –
in fact, there are multiple cases where we can now explain
behavior that was not previously understood.

4.1. Analyzing ferrofluid transport for magnetic drug targeting [50]

Ganguly et al. attempted to capture ferrofluid particles within
a glass tube containing a moving fluid by using a permanent
magnet located beneath the tube. The set-up is analogous to the
one presented in this paper allowing for an easy comparison.
Table 2 shows the parameters used in this experiment and the
corresponding values of our three non-dimensional numbers.

It is important to note that in this experiment, the particles are
injected into the bottom 1/16th section of the glass pipe. They
continue axially along this radial location until they encounter the
magnet. Therefore although the maximum velocity of the fluid
within the pipe is 2.5 cm/s, the maximum fluid velocity
experienced by the particles is 4.8 mm/s (assuming a parabolic
velocity profile). This produces W, Pe, and D non-dimensional
numbers noted in the ‘Ganguly’ column of Table 2.

Here the Renkin reduced diffusion coefficient is not applicable
because there is only a single vessel domain. Thus the behavior of
the particle concentration is dependent solely upon the magnetic-
Richardson and mass Péclet numbers. The mass Péclet number
leads to the estimation of the velocity/boundary layer delineation
position l. By comparing this value to the magnetic-Richardson
number, the behavior type can be determined. Since W¼9�
10�5

bl¼1.6�10�6 this places the predicted behavior squarely
within the boundary layer formation regime (even though the
centerline Stokes drag far exceeds the maximal applied magnetic
force, W51). We thus correctly predict the experimentally
observed boundary-layer formation region where the usual
Stokes drag vs. magnetic forces back-of-the-envelope analysis
fails.

Fig. 8. Concentration at the blood vessel wall (CB,vessel-wall) versus magnetic-Richardson number for a given mass Péclet number. Curves associated with each constant mass

Péclet number are shown in blue. The red line illustrates a concentration cutoff requirement of 4 +1% for boundary build-up behavior. Any magnetic-Richardson number

larger than the intercept between the red line and blue curve for a given Péclet number (shown by a downwards purple triangle) will exhibit a boundary build-up behavior.

The dotted orange line shows cuttoffs for a higher vessel wall concentration requirement of 4 +10%. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)
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4.2. Site-directed research of magnetic nano-particles in magnetic

drug targeting [23]

Similar to the experiment described above, Xu et al. captured
moving nano-particles within a glass tube using a permanent
magnet. Xu’s experiment, in contrast to Ganguly, includes a
magnet located farther away and a spherical capturing chamber is
used (the glass tube spreads out into a spherical bulb and then
goes back to a straight tube). The bulk fluid velocity was adjusted,
and the retention percentage within the capturing chamber was
quantified for various speeds. The authors noted that the
retention was 100% at a 5.3 mm/s and E15% at 100 mm/s. The
parameter values for these cases are shown in Table 2 under ‘Xu’.

Similar to Ganguly’s experiment, due to a single vessel domain the
Renkin reduced diffusion coefficient is not applicable. As above, the
delineating boundary position l and the magnetic-Richardson
number W are compared for the two cases Xu et al. considered.
When the fluid velocity is 5.3 mm/s, the magnetic-Richardson
number is �25 larger than the behavior delineation l. This
comparison implies behavior well within the boundary layer regime.
However, to correlate this behavior to the measured capture
percentage requires determination of the boundary thickness that
develops before the capture region. Since nano-particles were not
pre-mixed with the fluid but instead injected into the flow, the
particles retain their initial injection position within the flow section.
If the particles are assumed to be in the lower quarter of the flow near
the magnet (a reasonable assumption if the particles were injected
with minimal velocity), then the boundary layer that is swept into the

spherical capturing chamber can be determined. If the particles are
flowing at 5.3 mm/s then the capture percentage predicted by a
simulation of this case wasE100% which matches the measured
100% retention by Xu et al. When Xu set their velocity to the higher
100 mm/s value, only 15% of the particles were captured in their
experiment. In this case the delineating boundary position l is a
little closer to the magnetic-Richardson number (l is �18 greater
than W). The percentage captured predicted by a simulation of this
case was 13% which closely matches the 15% retention measured by
Xu et al.

Xu et al. commented that the standard force comparison (capture
force requirements versus magnetic forces) did not predict the
occurrence of their observed behavior. They suggested that the
particles agglomerated to generate large magnetic forces. While
agglomeration may increase magnetic force upon the concentration
of particles (see Section S3.5), our more subtle comparison of
magnetic forces versus Stokes drag forces away from the channel
centerline is sufficient to correctly predict Xu’s results.

4.3. Tumor remission in Yoshida sarcoma-bearing rats by selective

targeting of magnetic albumin microspheres containing doxorubicin

[38,91]

Widder et al. conducted in-vivo experiments on rats to target
tumors located on the tail using magnetically responsive micro-
spheres and an external magnet. These microspheres are composed
of a coat of albumin surrounding magnetic material (magnetite
nano-particles with 10–20 nm diameters) and a chemotherapy agent

Table 2
Parameters for experimental studies reviewed in Sections 4.1 to 4.4. Bolded items are quantities used to determine our three characteristic non-dimensional numbers. Here

‘cplry’and ‘MG’ are used to denote capillary and major blood vessel properties respectively. ‘N/A’ denotes unapplicable variables because the experiments were completed

within glass tubes. ‘–’ denotes unknown variables that are not needed because the magnetic forces were either supplied or could be otherwise be calculated.

Parameter Ganguly Xu Widder Bergemann Lubbe

Particle radius a 5 nm 10 nm 7 nmd 9 0.5 mme 125 nm 50 nm

Distance to magnet d 1 mm – 5 mm 1 mm 0.5 cm

Field strength 9
,
B9 1.3 T – 0.55 T 0.5 T 0.8 T

Magnetic intensity 9
,
H9 1�106 A/m – 4.3�105 A/m 3.9�105 A/m 6.3�105 A/m

Magnet length LM 6 cm – – 5 cm 3 cm

Magnetic force 9
,
F M9 4�10�5 pN 2.6�10�5 pN 0.12 pN 0.1 pN 3.5�10�2 pN

Maximum blood velocity VBmax cplry 4.8 mm/s 5.3 mm/s a E0.1 mm/s E0.1 mm/s E0.5 mm/s

MG 100 mm/s b E20 cm/s E20 cm/s E10 cm/sc

Vessel diameter dB cplry 10 mm (3mm

effective)

2 mm E6 mm E6 mm E7 mm

MG E1 mm E1 mm E5 mm

Fluid viscosity Z 0.001 Pa s 0.001 Pa s 0.003 Pa s 0.003 Pa s 0.003 Pa s

Stokes drag force 9
,
F S9 cplry 0.5 pN 1 pN a 3 pN 0.7 pN 1.4 pN

MG 20 pN b 6 nN 1.4 nN 0.28 nN

Blood diff. coeff. DB 4�10�11 m2/s 2�10�11 m2/s 1�10�13 m2/s 6�10�13 m2/s 1�10�12 m2/s

Scattering diff. coef. DS Cplry N/A N/A 0 0 0

MG 1�10�9 m2/s 1�10�9 m2/s 6�10�10 m2/s

Membrane diff. coef. DM Small N/A N/A 0 0 0

Large 1�10�13 m2/s 6�10�13 m2/s 6�10�13 m2/s

Tissue diff. coef. DT Small N/A N/A 0 0 0

Large 1�10�13 m2/s 6�10�13 m2/s 6�10�13 m2/s

Diffusion coefficient DTot cplry 4�10�11 m2/s 2�10�11 m2/s 1�10�13 m2/s 6�10�13 m2/s 1�10�12 m2/s

MG 1�10�9 m2/s 1�10�9 m2/s 6�10�10 m2/s

Magnetic-Richardson number W cplry 9�10�5 2.5� 10�5 a 0.04 0.14 0.025

MG 1.3� 10�6 b 2�10�5 1.5� 10�4 1.3� 10�4

Mass Péclet number Pe cplry 3.6� 105 5.3� 105 4�103 1�103 3.5� 103

MG 1�107 2�105 2�105 8.3� 105

Renkin reduced diffusion coefficient D Small N/A N/A E0 E0 E0

Large E0.05 E0.56 E0.8

Behavior boundary position l cplry 1.6� 10�6 1�10�6 2.2� 10�5 5�10�5 2.4� 10�5

MG 7.2� 10�8 2.2� 10�6 2.2� 10�6 4.4� 10�7

a 100% retention of particles.
b 15% retention of particles.
c ignores vena cava and aorta velocities.
d radius of magnetite particle.
e radius of microsphere or liposome.
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(doxorubicin). Magnetic material composition within microspheres
has a wide range but is typically between 20% and 50% by weight
(w/w) [92]. Knowing the density of the albumin shell (1.36 g/ml
[93]), the number of particles within a 1-mm sized microsphere
can be approximated (E6000 for 20% w/w). They injected the
ventral caudal artery near the rat tail tumors with these magnetically
responsive albumin microspheres. The permanent bipolar adjustable
gap magnet was positioned around the tumor and held for 30 min.
For cases in which the magnet was applied, the rats saw decreased
tumor size over the length of the experiment. Without a magnet,
the rats usually had an increased tumor size and eventually died
during the experiment. These data suggests that the magnetic
particles were concentrated by the magnet at the tumor location.

Table 2 shows the numbers for this experiment. There is a
range of appropriate magnetic-Richardson numbers here, from
WE0.04 (for small capillaries) to WE2�10�5 (for major
vessels). Likewise, the Péclet number varies from 4�103 to
2�105. Finally, the Renkin diffusion coefficient, determined from
Eq. (19), ranges between D� 0:05 when in sinusoidal capillaries
(liver, spleen and bone marrow) and essentially zero when in
continuous capillaries and fenestrated capillaries. For tumors with
leaky vessels that have an average membrane pore size of 600 nm,
the maximum Renkin number is D� 0:002. Based on this, we
predict that the behavior delineation position will be
lE2.2�10�5 for capillaries and lE2.2�10�6 in large vessels.
Since the delineation position is well to the left of the magnetic-
Richardson number, the behavior will primarily be boundary layer
formation. We thus predict, except for situations where the
Renkin number approaches unity (for damaged or sinusoidal
vessels), that the particles can be accumulated to higher
concentrations due to a boundary layer formation in the tail for

all physiological conditions—for small and large vessels, with fast
and slow blood vessel velocities. Since the rat tumors decreased in
size due to magnetic forces, it is reasonable to conclude that the
magnetic particles were targeted into and around the tumor
location. This matches our theoretical predictions above.

4.4. Preclinical trials experiences with magnetic drug targeting

[16,33]

The rat experiments of Fig. 1b are used as an example throughout
this paper. The non-dimensional numbers for these experiments are
summarized in Table 2 under ‘Bergemann’. Here, for a 1 mm focusing
depth, the magnetic-Richardson number W varies from 0.14 in
capillaries to 1.5�10�4 in large vessels and the Péclet number varies
similarly from 1000 to 2�105. The Renkin reduced diffusion
coefficient is effectively zero for continuous and fenestrated capil-
laries. In sinusoidal capillaries the Renkin value is approximately
D� 0:56 and within leaky vessels with an average pore size of
E600 nm the Renkin value is D� 0:36. From these values, the
behavior delineation position is predicted to be lE5�10�5 in
capillaries and lE2.2�10�6 in large vessels.

Since W far exceeds l, both capillaries and large vessels at
r1 mm depth will experience a boundary layer formation
behavior, except for situations where the Renkin number closely
approaches unity (for damaged vessels) then velocity dominated
behavior occurs. Fig. 9 shows the predicted transient and
equilibrium ferrofluid concentration for a capillary and major
blood vessel at 1 mm depth near the magnet. Ferrofluid focusing
is seen near the blood vessel wall for both the slowest (capillary)
and the fastest (major artery) blood flow.

Fig. 9. Predicted ferrofluid concentrations for 1 mm deep magnetic targeting in the rat experiments of Fig. 1b. An initial, intermediate, and final (steady state) time are

shown for capillary (slowest blood flow, VBmax¼0.1 mm/s) and a major blood vessel (fastest blood flow, VBmax¼20 cm/s). Contrary to the crude estimate in the introduction,

magnetic focusing is predicted even in the major blood vessels.
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4.5. Clinical experiences with magnetic drug targeting [17]

Lubbe has performed phase I human clinical trials for the
treatment of head, neck and breast cancer shallow (near the skin)
tumors (last column in Table 2 under ‘Lubbe’). At the surface of the
tumor (at a 0.5 cm distance from the magnet) the magnetic-
Richardson number varies from 0.025 in capillaries to 1.3�10�4 in
large vessels and the Péclet number varies similarly from 3500 to
8.3�105. The Renkin reduced diffusion coefficient is effectively zero
for continuous capillaries. In fenestrated capillaries and sinusoidal
capillaries the Renkin value is, respectively, D� 0:002 and 0.8.
Within leaky vessels with an average pore size ofE600 nm the
Renkin value is D� 0:7. From these values, the boundary position
delineation is predicted to be lE2.4�10�5 in capillaries and
lE4.4�10�7 in large vessels.

We find that the magnetic-Richardson number W is several
orders of magnitude larger than the behavior delineation position
value l at the surface of the tumors. Therefore a boundary layer
formation behavior is predicted at tumor surfaces. A boundary
behavior, however, will still occur at some distance within the
tissue as long as the magnetic force upon those deeper particles
keeps the magnetic-Richardson number within the boundary
layer formation regime. The depth of boundary layer formation
can be determined within a given force field for physiological
blood velocities (capillaries and large vessels) as shown in Fig. 10.
Up to a depth of 5 and 7.9 cm for large vessels and capillaries
respectively, the particles will exhibit a boundary layer behavior.
After these cutoff distances, the nano-particles will exhibit a
velocity dominated behavior and will be washed away by blood
flow in major and minor blood vessels respectively. Between a
distance of 5 and 7.9 cm, the particles will transition from a
complete boundary layer behavior to a velocity dominated
behavior getting washed away first in larger vessels that exhibit
a higher blood velocity.

During Lubbe’s clinical trials, nano-particles were observed to
be targeted approximately within 5 cm [94] of the magnet located
at the tumor site by magnetic resonance imaging immediately
after treatment (Fig. 1a), a finding that is consistent with our
predictions here [17]. If the same sized particles with a stronger
and larger magnet were used, such as a 2 T (MRI strength)
electromagnet with a 25 cm diameter, 20 cm length and 5 cm air
core, then we predict that targeting would be possible to a depth
of 20 cm in large vessels and to a depth of 30 cm in capillaries.

4.6. Summary of cases

Fig. 11 shows a graphical representation of all the experi-
mental cases considered in this paper and compares them to our
predicted behavior. For the human clinical trials (Lubbe), the
experimental domain is represented more accurately as being
curved because the magnetic-Richardson number and the mass
Péclet number both vary together across human physiological
conditions: blood velocity is higher in bigger blood vessels [95].
This affects both the Richardson and Péclet numbers (see Eqs. (16)
and (17)). It was possible to quantify the upper and lower bound
curves for human experiments (Lubbe), but not for animal
experiments (Widder and Bergemann), because more published
physiological data is available for humans. A detailed analysis and
derivation of the curves used is provided in the Supplementary
Information (Section S4).

Fig. 11 also shows where the magnet creates a concentration in
the tissue that is greater than the systemic injected concentration.
In the boundary layer domain, even though particles accumulate
at the blood/membrane interface, there are some cases where that
accumulation is high enough to create a C41 in the surrounding
tissue, and others where the accumulated amount is insufficient.
The cases where more tissue accumulation occurs are influenced
by the endothelium thickness to blood vessel diameter ratio, and

Fig. 10. Focusing depth for the Lubbe 0.8 T human clinical trials experiments. The magnet is positioned a distance of 0.5 cm from the skin. The predicted depth of the

boundary layer formation, transition, and velocity dominated regions is shown. For particles deeper inside the body, the magnet is unable to exert a sufficient magnetic

force (shown on the right) to generate a ferrofluid boundary layer behavior. Focusing of magnetic nano-particles is predicted to be possible in major vessels up to a 5 cm

depth, and in capillaries to a greater 7.9 cm depth.
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this additional geometric consideration adds a further non-
dimensional number that can be varied. In Fig. 11, the lightly
shaded regions (light yellow in B, light purple in C, and light
pink in D) show the extent of the experimental domains that are
predicted to have a tissue concentration greater than unity. Here
we assumed a representative endothelium thickness to vessel
diameter ratio, a ratio that corresponds to a typical arteriole.

5. Conclusion

It is not enough to compare Stokes drag at the centerline to
magnetic forces to conclude whether particles can or cannot be
magnetically captured against blood flow. Such a comparison
dramatically under-predicts the ability of magnetic forces to capture
particles because it does not account for the near-zero velocity of
blood near vessel walls nor the effects of diffusion. We have carried
out a detailed analysis to better understand and quantify the
behavior of magnetizable particles in-vivo. We find that there are
three types of behaviors (velocity dominated, magnetic dominated,
and boundary-layer formation) uniquely identified by three

essential non-dimensional numbers (the magnetic-Richardson,
mass Péclet, and Renkin numbers). Figs. 5–8 allow magnetic drug
delivery researchers to readily determine which behavior should
occur in their experiments. These three behaviors remain present
even if we consider additional realistic and complicating features,
such as blood flow pulsatility, non-uniform magnetic fields, curved
blood vessels, and particle agglomeration, although these added
effects can modestly shift the delineations between the behaviors.
Only the presence of skin, which creates a new interface where
particles can build up, adds a qualitatively new behavior and it
would require the addition of a fourth non-dimensional number to
map out its effect. A comprehensive comparison to prior published
in-vitro and in-vivo experiments shows excellent agreement and
explains results that were not previously understood.
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S1. Non-Dimensionalizing the Governing Equations 
In a model with dimensional parameters, like equation (10), the numerical parameter values used depend on 

the chosen units (meters versus millimeters), there are typically multiple parameters associated with each 

phenomena (with diffusion, convection, and magnetic drift), and their effects are coupled together (for 

example, changing the particle radius changes both the diffusion coefficient D  and the magnetic drift 

coefficient k ). Non-dimensionalizing (i.e. normalizing) the model reduces the number of parameters to those 

that are actually independent [75].  The resulting non-dimensional numbers capture the ratio between 

competing physical effects; they remain the same even if a different system of units is chosen; and they are 

uncoupled in the sense that each non-dimensional number is the ratio between two competing effects and is 

independent from parameters that make up any third effect (e.g. the Renkin number is a ratio of diffusion in 

tissue versus in blood and does not depend on particle size).  

As described in the main text, for our idealized blood vessel system, nano-particle behavior is uniquely 

determined by three non-dimensional numbers: the magnetic-Richardson number, the Renkin reduced 

diffusion coefficient, and the mass Péclet number. If we consider two situations A and B in which the blood 

vessel width, particle size, and magnetic field strength differ dramatically, but these two situations share the 

same three non-dimensional Richardson, Renkin, and Péclet numbers, then these two different situations will 

exhibit identical behavior because they will both have exactly the same balance of magnetic, diffusion, and 

convection phenomena. 

We now formally derive the non-dimensional form of our model (equations (13), (14), and (15)) from the 

dimensional form. Repeating equation (10) for clarity 

(S1) [ ]RBTot VCVCCD
t

C vv
 ++∇−⋅−∇=

∂

∂
 

let maxmax /
ˆ

,/
ˆ

,/ˆ,/ˆ,/ˆ
BRRBBBoBB VVVVVVCCCdyydxx

vvvv
=====  so each non-dimensional variable 

(hatted) is the dimensional variable divided by a characteristic quantity. Here Bd , oC , and maxBV  are the 

characteristic length (the width of the blood vessel), characteristic concentration (the inlet magnetic particle 

concentration), and the characteristic velocity (the maximum centerline velocity in the blood vessel). Using 

these three characteristic quantities, it is further possible to consistently define all other needed non-
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dimensional variables and derivative operators as oBB ttdVtt /)/(ˆ
max == , ottt /1/ˆ =∂∂

 
and 

BB dxdx /ˆ)ˆ(/)(/ ∇=∂∂=∂∂=∇ .  

Table S1: summarizes the non-dimensional transformations for all variables. The five essential dimensional 

variables (those variables that are bolded in Table 1 in the main text) reduce down to just two non-dimensional 

numbers, as predicted by the classical theorem of non-dimensional analysis: the Buckingham Pi Theorem [75]. 

These two non-dimensional numbers are the magnetic-Richardson number and the mass Péclet number. The 

third non-dimensional number considered in the paper, the Renkin reduced diffusion coefficient of the 

endothelial membrane or the tissue, is required because diffusion in the endothelium or the tissue differs from 

diffusion in the blood. 

Table S1: The non-dimensionalized variables. 

Parameter 
Dimensional 

Symbol [and units] 
Non-Dimensional Version 

Characteristic Quantity Used 

for Non-Dimensionalization 

Particle 

Radius 
a  [m] Bdaa /ˆ =  

X Length x  [m] Bdxx /ˆ =  

Y Length y  [m] 
Bdyy /ˆ =  

Bd  the average width of the 

blood vessel, e.g. Bd  = 0.03 mm 

for an arteriole  

Velocity V
v

 [m/s] 
max/

ˆ
BVVV

vv
=  

maxBV  the maximum centerline 

blood velocity, e.g. maxBV  = 1 

cm/s for an arteriole 

Concentration C  [mol/m
3
] oCCC /ˆ =  

oC  the inlet concentration, e.g. 

oC  = 2 to 4 mol/m
3
 

Time t  [s] 
oB

B

t

t

d

V
tt == maxˆ  

Non-dimensionalized by the 

composite quantity 

max/ BBo Vdt =  

Diffusion 

Coefficient 
TotD  [m

2
/s] 

max

2
ˆ

BB

Tot

B

o

TotTot
Vd

D

d

t
DD ==  

Non-dimensionalized by the 

composite quantity maxBBVd  

 

Substituting the non-dimensional variable (or derivative operator) multiplied by the constant characteristic 

quantity for each dimensional variable (or operator) rewrites equation (S1) as  
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Multiplying both sides by oo Ct /  
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Canceling and grouping terms, and recalling that ot  is defined to be max/ BB Vd  gives 

(S4) 
























 ++∇








−⋅∇−=

∂

∂

4434421

vv

44 344 21
ADVECTION

DIFFUSION

max

ˆˆ
 

ˆˆˆˆ
ˆ

ˆ
CVVC

Vd

D

t

C
RB

BB

Tot . 

Defining the mass Péclet number to be TotBB DVd /max=Pe  and the magnetic Richardson number to be the 

downward component of the non-dimensional magnetic velocity yields equation (13) in the main text (where 

the sub-script B has been added to denote nano-particles in blood and the hats have been dropped).  

Equations (14) and (15) in the main text are derived in exactly the same way.  

 

S2. Simulation Implementation and Computational Parameters 
Below we provide details of both the COMSOL and VMT numerical implementations, as well as a comparison 

of the two to show that they give the same answer (up to the poorer solution accuracy possible with COMSOL). 

S2.1. COMSOL Implementation 

S2.1.1. Software Implementation 

For implementing the model, the software package COMSOL Multiphysics version 3.4 was chosen initially. This 

package allowed the geometry specified in Figure 2 to be constructed. Equations (13) to (15) were solved for 

the entire control volume using the prescribed blood velocity and magnetic velocity (equations (8) and (7)). 

Simulation times ranged from 15 minutes for the easy cases with 100≤Pe , up to 36 hours for 1000≈Pe , 

and were unsolvable for 3000≥Pe  even when using a high-end quad-core 32 GB RAM computer (a typical 

2009 desktop PC or laptop has only 4 GB of RAM available).   

S2.1.2. Meshing Parameters 

COMSOL computes the solution by using the finite element method; that is by meshing the region and 

numerically integrating the approximate solution of the PDE at all mesh points until converged [96]. The mesh 

sizing must be sufficiently small to capture any physics being modeled in the domain. In systems with both 
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advection and diffusion, the cell Péclet number sets the mesh sizing dependence on the modeled physical 

phenomena to ensure numerical stability. The cell Péclet number is defined as  

(S5) dxPecell PeΨΨΨΨ=  

where dx  is the mesh size in any primary coordinate direction. When 2≤cellPe , the solution is guaranteed 

to be numerically stable [97]. This requirement for stability demands small mesh elements due to small 

diffusion coefficients (for a 1000≈Pe  simulation, this requirement translated into 4.7 x 10
7
 required mesh 

points and 80 GB of available memory, either random access or virtual memory).  The COMSOL simulations 

were solved using a computer that contained a quad-core processor. Using COMSOL and this high-end 

computer we were able to solve cases up to ≤Pe  1300 but higher Péclet number cases remained unsolvable 

(a 
8101×=Pe  would have required 4.7 x 10

17
 mesh points to ensure numerical stability corresponding to a 

2000 Terabytes ≈ 2 × 10
6
 Gigabytes of required memory, an infeasible amount). 

S2.2. Vessel-Membrane-Tissue (VMT) Solver 

The VMT solver provided far more capabilities than COMSOL and was both over 500 times faster than COMSOL 

and able to solve cases that COMSOL could not. Using the VMT solver we were able to resolve all the needed 

cases to sufficient accuracy to accurately and unambiguously locate the delineations between our 3 observed 

behaviors. The VMT solver is comprised of four distinct components used in combination: 1) a graded mesh to 

adequately resolve thin boundary layers; 2) a change of unknowns that enabled evaluation of steady states in 

tissue and membrane layers through a highly accelerated time-stepping procedure [54-57]; 3) an on-and-off 

fluid-freezing methodology that allowed for efficient treatment of the multiple-time scales that exist in the 

problem; and 4) the Alternating Directions Implicit (ADI) method for solving PDEs [57].  

To resolve the thin boundary layer that can form at the interface between the vessel and the endothelial layer, 

a typical Cartesian mesh was not adequate. Instead, the VMT method used a graded mesh implemented 

through an exponential change of unknowns of the form  

(S6) jy

j e
PeΨΨΨΨ−

=ξ ,  and 

(S7) 
)1/(1,,...,1,)1(

)1/(1,,...,1,)1(

−==−=

−==−=

MhMjhjy

NhNihix

yyj

xxi
. 

To numerically resolve advection in the vessel, we began by using a small time step, t∆ = 0.1. This presented a 

problem, however, because diffusion in the membrane and tissue can be small. Therefore using this time step 

required a long simulation time in order for the concentration to reach steady state. If the time step was taken 

to be much larger, we risked being unable to resolve ferrofluid advection in the vessel. To overcome this 

difficulty, we periodically “froze” and “un-froze” the concentration in the blood vessel. Freezing occurred once 

the concentration in the blood vessel approached steady state allowing for only the concentration in the 

membrane and tissue to be evolved. Evolution of the concentration in only the membrane and tissue 

continued until the freezing approximation was no longer accurate, at which time we unfroze the 

concentration in the blood, and evolved the entire system at a significantly reduced time-step until freezing 

could be performed again. The process was repeated until steady-state in the complete system was reached.  



 5 

In order to quickly obtain steady states in the membrane and tissue regions for each frozen vessel 

concentration, we performed a transformation that allowed us to take advantage of a fast steady-state solver 

based on selection of adequately chosen, very large time-steps. The required transformation was a change of 

unknowns 

2
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y
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−

−

=
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ω

ω
 

that eliminated the magnetic term in the PDE for the membrane and tissue, converting the convection 

diffusion spatial operator to a spatial operator of Helmholtz type 
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We then selected time-steps in a form described in [98], that is 
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Mh is the step size in the y-direction in the membrane, and n is the iteration number. This was done in 

conjunction with freezing the concentration in the vessel to obtain fast convergence.  

An essential element of the overall VMT solver was the Alternating Directions Implicit (ADI) methodology first 

introduced in [54-57]. Based on reducing a given PDE into separate ODEs through the factorization of terms 

associated with a particular variable, ADI methods require line-by-line solutions of small sets of simultaneous 

equations. The key feature of these methods is their unconditional stability, thus permitting our VMT solver to 

avoid the extremely small time-steps imposed for stability by explicit schemes in the presence of small 

diffusion coefficients and allowing the use of the efficient time-stepping scheme described earlier. The ODEs 

generated from this method can be solved by using a variety of methods. Because of the rectangular geometry 

being considered for the VMT solver, a standard Finite Difference approach was used. For general (e.g. curved) 

domains, another approach is required. The only available methodology that gives rise to unconditionally 

stable numerics for the Alternating Directions method in general non-rectangular domains is the Fourier 

Continuation-Alternating Directions (FC-AD) approach introduced in [89]. By solving the ODEs generated in the 

ADI algorithm through the use of Fourier Continuation methods [99], the FC-AD algorithm has the ability to 

yield high-order accurate, unconditionally stable solutions in essentially linear time. The FCAD algorithm is 

currently being implemented for future simulations of flow through more complex vasculature geometries and 

will be presented in a forthcoming paper, [90]. 
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S2.3. Comparison of COMSOL versus VMT 

Up to the accuracy possible in COMSOL, the two numerical methods provide the same answers. Below we 

show two side-by-side comparisons: one easy case in which the COMSOL solution accuracy is sufficient (here 

there is a very good match between COMSOL and VMT) and one medium-difficulty case where COMSOL was 

able to find a solution but the accuracy of VMT is better. For hard (high Péclet number) cases, COMSOL cannot 

provide a solution and VMT is the only option.  

 

 

 

Figure S2:  Medium case at a Pe  = 1000, ΨΨΨΨ  = 10
-4

, DDDD  = 10
-3

. Cross-sectional magnetic nano-

particle concentration for steady state for both COMSOL and the VMT method. The percent 

error is calculated by (CComsol – CVMT)/CVMT. 

 

Figure S1:  Easy case at a Pe  = 10, ΨΨΨΨ  = 10
-2

, DDDD  = 10
-3

. Cross-sectional magnetic nano-

particle concentration for steady state for both COMSOL and the VMT method. The percent 

error is calculated by (CComsol – CVMT)/CVMT.  
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S3. Relaxing the Idealizations: Added Simulation Features 
Additional features can be added to relax simulation idealizations. These features sometimes make a 

quantitative difference to the nano-particle concentration profiles but, with the exception of the skin 

boundary condition, they do not make a qualitative difference. The three behavioral forms still occur though 

their delineations can shift moderately depending upon the features added. 

S3.1. No Extravasation through Blood Vessel Membrane 

First there is a trivial case to consider when the blood vessel will not allow any particles to pass through the 

membrane into the surrounding tissue: i.e. no extravasation. This case can be modeled by forcing the flux 

normal to the blood vessel membrane surface to be equal to zero. Figure S3 shows how the two characteristic 

behaviors (velocity dominated and boundary layer formation) remain in effect in this case. The magnetic 

dominated behavior, however, which requires particles to move from the blood into the tissue, is no longer 

possible.  

 

S3.2. Pulsatile Blood Flows 

Flow in blood vessels is pulsatile [82, 100-103], its forward velocity increases and decreases as the heart pumps 

(see Figure 5(a) in [100] of an archetypal peak velocity waveform complied from 3560 cardiac cycles). We now 

include this blood velocity oscillation and show that it does not qualitatively change the 3 types of behavior we 

see – we still find a magnetic dominated, velocity dominated, and boundary layer regime.  

The waveform associated with high pulsatile cardiac blood flow was used to set the blood velocity in time. A 

choice of three heart rates was used (a resting heart rate of 1 Hz, 1.5 Hz, and a rat heart rate of 6.75 Hz) and 

 

Figure S3:  No extravasation through the blood vessel membrane. The characterisitic behaviors still exhibit 

their defining characteristics within the blood vessel. The magentic dominated case is no longer possible. 

Instead, when there is no extravasation (e.g. for particles bigger than blood vessel fenestrations) magnetic 

dominated behavior is replaced by a boundary layer type behavior. 
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applied to three cases that produce the three characteristic behaviors. Since magnetic drug targeting localizes 

particles to a region by use of a magnet held locally for minutes, e.g. [4], but blood pulsation occurs once every 

second, it is appropriate to consider the averaged effect that the pulsating blood flow will have on particle 

concentration. Figure S4 shows the time averaged concentration profiles taken for three heart beats after a 

treatment window of one hour for the 9 chosen cases. 

In comparison to [104], we do not consider a significant ferrofluid inlet concentration where the ferrofluid can 

then become an obstacle to the incoming flow and therefore we do not expect recirculation regions to be 

created. This phenomenon can make the average of the pulsatile case differ from the steady inlet flow case. 

Based on the range of biological parameters, the relevant non-dimensional numbers possible range between 

0.01 (in capillaries) and 27 (in the largest vessels) for the Womersly number and the Reynolds number varies 

between 0.001 (in capillaries) and 3900 (in the largest vessels such as the aorta or vena cava). 
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Figure S4 shows that blood pulsatility under a uniform magnetic force field does not impact behavior 

delineation: the time-averaged concentration profiles remain in the magnetic dominated, velocity dominated, 

or boundary layer regime as they were in the constant blood flow case. This result has allowed for the 

simplification of the physiological model to the cycle-averaged blood velocity experienced within that vessel, a 

simplification we have used throughout the paper.  

 

Figure S4:  Pulsatile blood flow concentration profiles for the three characteristic behaviors experiencing 

three different heart rates (HR). For each pulsatile case, the concentration profile consists of the time average 

for three heart beats after a treatment window of one hour. This concentration can be compared to the prior 

steady state concentrations when blood flow pulsatility is not considered. The three behaviors are 

qualitatively the same and further are also similar quantitatively. (For this 333 Péclet number case, the 

Womersley and Reynold numbers can vary between 0.01 to 0.19 and 0.001 to 2.6 respectively for 

physiological and practical engineering conditions, according to the parameters in Error! Reference source 

not found..) 
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S3.3. Non-Uniform Magnetic Force Fields 

In the main manuscript we treated the magnetic force as constant (see Figure 3). Here the exact magnetic field 

and the spatial variation in the resulting magnetic force on the magnetic particles is used. The magnetic force 

increases as the particles move closer to the magnet. Various parameters for a particular experiment will 

adjust how much the magnetic force increases in the blood vessel and surrounding tissue. These parameters 

include the size of the magnet, the size of the considered tissue-vessel system, and the distance of the tissue-

vessel system from the magnet. In this section we exactly solve the magneto-static equations (1) to (3) and 

plug the computed magnetic field ),( yxH
v

 into equation (10) to state and solve the PDE for particle transport 

(previously the magnetic force 
2~ HF ∇ was assumed to be a constant pointing downwards). To quantify the 

 

Figure S5:  Concentration profiles for various magnetic force ratios. Three cases were chosen that illustrated 

the prototypical behaviors (magnetic dominated, velocity dominated, and boundary layer formation behavior) 

and the magnetic force ratio was changed from RM = 1 to 2 and 10 by increasing the size of the magnet and 

reducing the distance between the vessel and magnet. The exact magnetic forces are shown as blue arrow 

overlays within each plot. The case of RM = 1 and 2 show the arrow magnitudes in linear scale, while the 

case of RM = 10 shows the arrow magnitudes in log scale (an arrow with twice the length will have ten times 

the magnitude). 
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deviation from a uniform magnetic force, we use the metric centerlineMMM FFR ,max, /=  where centerlineMF ,  is the 

magnetic force along the blood vessel centerline and max,MF  is the maximum magnetic force within the 

considered vessel-tissue domain (it occurs at the bottom of the domain nearest the magnet corners where the 

magnetic field gradients are the highest). To examine how non-uniform magnetic force fields affect the three 

prototypical behaviors, three case studies were simulated for a varying magnetic force ratio of RM = 2 and 10. 

Rm was varied by increasing the size of the magnet and reducing the distance between the vessel and magnet. 

Figure S5 shows how the magnetic force ratio does not affect the prototypical behavior. When RM = 1, the 

simulation is exactly equivalent to the cases considered in the main paper. As RM increases, the maximum 

magnetic force at the bottom edge of the tissue-vessel system increases. In the case of a magnetic dominated 

behavior, the magnetic force ratio has very little to no effect on the solution. For velocity dominated cases, the 

vessel still maintains the inlet concentration value but the concentration in the tissue and membrane 

decreases due to increased pull from the magnet. Lastly, in the boundary layer formation cases, the vessel wall 

concentration simply increases. Since the vessel wall concentration at a given magnetic-Richardson number 

increases with the magnetic force ratio Rm, the behavior delineation position ( λ ) will shift left in Figure 5 as 

the magnetic force ratio increases. 

S3.4. Curved Blood Vessels 

Blood vessels within any organism are rarely, if ever, straight. The idealized straight blood vessel used 

throughout the paper was relaxed and two different curvatures were utilized to determine the variance of the 

characteristic behaviors. The blood vessel length in each case was kept constant, and the only geometric 

parameter that changed was the radius of curvature. As can be seen in Figure S6 below, the characteristic 

behaviors retained their defining qualities. The only difference in cross-sectional concentration was seen in the 

boundary layer formation cases where the slight curvature case experienced a modest increase in 

concentration compared to no curvature or large curvature. This was because a slight curvature contained a 

longer segment of blood vessel in which the particles are able to form a boundary layer leading to a higher 

concentration build-up over that particular segment. However, this increase in concentration only shifts the 

boundary behavior delineation and does not change the overall observed behavior.  
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S3.5. Particle Agglomeration 

Agglomeration of particles can be considered approximately within our current framework. To do so, we think 

of a ‘super-particle’ composed of n ferro-magnetic particles stuck together. The magnetic force on such a 

particle increases by a factor of × n. However, the diameter of the particle goes only as 3 n  since it takes 2 × 2 

× 2 or × 8 particles to make a twice-as-big super-particle. Thus the Stokes drag force increases by 3 n  and so 

the magnetic-Richardson number increases by 
3/2n (see equation (16)). For the nano-particles used in the rats 

of Figure 1b, if we consider a super-particle made up of 125 particles, the magnetic-Richardson number 

increases from 0.14 to 3.5. Since the super-particle has a larger radius, the blood and membrane diffusivities, 

BD  and MD , will be smaller decreasing from 6x10
-13

 and 2x10
-13

 (for leaky capillaries with 600 nm pores) to 

1x10
-13

 and 0 respectively. The scattering diffusion coefficient, SD , will stay the same, however, since it is only 

dependent upon the type of blood vessel. This causes the mass Péclet number to increase from 1000 to 6000. 

The Renkin coefficient will instead decrease from 0.36 to 0. One can now read-off the behavior of such a 

particle from Figure 5 and Figure 6 in the main paper as before: clearly, a case that was previously velocity 

 

Figure S6:  Curved blood vessels and the three prototypical behaviors. The curvature of the 

blood vessels does not affect the characteristic trend of the behaviors, but it can shift the 

behavior boundary delineation curve slightly. 
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dominated could now fall into the boundary layer regime. In reality, during agglomeration there will be a 

statistical distribution of particle sizes, and chains can form instead of our simplified ‘super particles’. To 

analyze such cases correctly requires additional research.  

S3.6. Skin Boundary Condition 

In animal and human trials, skin prevents magnetic particles from leaving the tissue. To model this case we 

enforce a boundary condition at the bottom of the tissue closest to the magnet that does not allow a flux of 

magnetic nano-particles across it. As expected, this causes a pile-up of particles just inside the skin nearest the 

magnet. Depending on the width of the tissue section being considered, this build-up can extend into the 

vessel region qualitatively distorting the three prototypical behaviors. Three case studies were chosen to 

examine the effect that the skin boundary has upon the solution.  

 

For any situation, if the blood vessel is close to the skin, the accumulation of ferrofluid at the skin can build up 

and can extend back through the tissue and into the vessel overwhelming any boundary layer that 

may otherwise have formed at the blood vessel wall. The magnetic dominated case saw an increase at the skin 

boundary, and a slight increase in particle concentration in the blood vessel due to the ability of the particles 

to build up at the skin. The velocity dominated case saw only a slight concentration build-up near the skin 

and a negligible change within the blood vessel. This is because particles are constantly washed out of the 

 

Figure S7:  The effect that the skin boundary condition has upon the three prototypical behaviors can be seen 

by comparing the lower row to the top row of cases. The particles, once pulled through the vessel, travel to 

the skin boundary and then build-up along this interface and can extend back into the vessel region. This is 

most apparent in the magnetic dominated case where there is a build-up within the blood vessel membrane 

due to the presence of the skin boundary condition. 
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vessel and not captured by the magnetic field thus they do not readily arrive at the skin interface.  The 

boundary layer case had a significant increase in the particle concentration near the skin and vessel 

membrane, but very little change within the blood vessel. Particles in this case are pulled through the 

membrane and into the tissue with build-up near the skin only slightly affecting the blood vessel. 

S3.7. Varying of Tissue Diffusivity 

In the main text the Renkin tissue coefficient, 
TTTT
DDDD  (equation (20)), was always larger than the membrane 

Renkin coefficient, DDDD  (equation (18)), so that the limit to particle diffusion out of the vessel was the 

 

Figure S8:  The effect on two prototypical behaviors by varying the Renkin reduced diffusion coefficent for 

tissue (
TTTT
DDDD ). The non-dimensional number cases used in the main text (Sections Error! Reference source 

not found. and Error! Reference source not found.) are shown on the top row. The Renkin tissue 

coefficient is decreased in each subsequent row so that the membrane Renkin coefficient is the same as the 

Renkin tissue coefficient in the second row. The last row signifies a Renkin tissue coefficient an order of 

magnitude less than the membrane Renkin coefficient. 
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membrane. This behavior is consistent with many tissue-vessel systems but not all [25]. There are physiological 

conditions were the underlying tissue might not allow diffusion of particles as easily as a membrane, the 

Renkin tissue coefficient would then be smaller than the membrane Renkin coefficient. Therefore the effect on 

particle concentration for changing the Renkin tissue coefficient (a fourth non-dimensional number) must be 

examined. Two cases were chosen to explore the effect changing tissue diffusivity has upon the steady-state 

concentration: boundary layer formation and velocity dominated behavior. Since the magnetic dominated 

behavior occurs only at Renkin reduced diffusion coefficients that are near unity, it does not make sense to 

vary the tissue diffusivity significantly for a magnetic dominated case. 

The above figure shows cases where the Renkin reduced diffusion coefficient for the tissue is changed while 

the regular (endothelial membrane) Renkin reduced diffusion coefficient is held constant at DDDD  = 0.001. The 

first row (
TTTT
DDDD  = 0.01) corresponds to the typical cases used in this paper where we have assumed that 

diffusion in the tissue is x10 greater than the diffusion in the endothelium (diffusion in the tissue is 1/100
th

 that 

of blood while diffusion in the membrane is 1/1000
th

 that of blood). The second row (
TTTT
DDDD  = 0.001) shows the 

concentration if the two Renkin values are equal (diffusion in the both tissue and membrane is 1/1000
th

 that of 

blood). Here it is possible to see that the tissue space becomes an extension of the membrane space with an 

equivalent behavior (because DDDDDDDD
TTTT

= ). The third row (
TTTT
DDDD  = 10

-4
) shows the solution when the diffusion in 

the tissue is x10 smaller than the diffusion in the endothelium (diffusion in the tissue is 1/10000
th

 that of blood 

while diffusion in the membrane is 1/1000
th

 that of blood). Now the tissue space holds the primary 

concentration of particles. In all cases, the steady state vessel wall concentration remains essentially constant 

as we change the tissue Renkin value. This suggests that the relationship between these two Renkin values 

merely effects the distribution of particles between the membrane and the tissue and not the vessel 

concentration. Since the vessel wall concentration is not easily effected, the three prototypical behaviors and 

their delineation boundaries do not change. 

S3.8. Different Particle Hydrodynamic and Magnetic Core Radii 

For simplicity, typically the hydrodynamic and magnetic core radii are assumed to be equal. Most often this is 

not exactly the case and there is a slight mismatch between the two values due to particle coatings that are 

added onto either affix therapeutics or immune system evading mechanisms [2, 17]. Then the hydrodynamic 

radius is slightly larger than the magnetic core radius leading to an increase in the Stokes drag force compared 

to the magnetic force. In this case, equation (4) would remain the same and equations (6) and (7) would 

change to 
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where r  is the hydrodynamic radius of a particle. Therefore the non-dimensional magnetic-Richardson 

number changes in addition to a slight change in the Péclet and Renkin numbers. Using the same rat example 

as throughout the paper, if the 250 nm diameter particle had a 300 nm hydrodynamic diameter, the magnetic 

force acting upon this particle would remain constant while the Stokes drag force changes from 0.70 pN to 

0.84 pN. This would cause a slight decrease in the magnetic-Richardson number from 0.14 to 0.12. Since the 
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particle has a larger radius, the blood and membrane diffusivities, BD  and MD , will be smaller decreasing 

from 6x10
-13

 and 2x10
-13

 (for leaky capillaries with 600 nm pores) to 5x10
-13

 and 1.4x10
-13

 respectively. The 

scattering diffusion coefficient, SD , will stay the same, however, since it is only dependent upon the type of 

blood vessel. This causes the mass Péclet number to increase from 1000 to 1200. The Renkin coefficient will 

instead decrease from 0.36 to 0.28. 

S3.9. Non-Perpendicular Magnetic Force 

For blood vessels in animal or human vasculature, the alignment of the blood vessels obviously varies and the 

applied magnetic force may not be perpendicular to the blood flow. We considered this case in the main text 

because it is the least complex scenario to think about, and because it represents a best case (the magnetic 

force is lined up to extract as many particles as possible). A simple first approximation of the ferrofluid 

behavior for the case when a blood vessel is not aligned perpendicular to the magnet force is to separate the 

magnetic force into the perpendicular (y-direction in Figure 2) and parallel (x-direction in Figure 2) 

components. Then the perpendicular magnetic force component can be used as the magnetic force in 

equation (16), while the parallel component can be added to the Stokes drag force to be used as a ‘net’ Stokes 

drag force in equation (16) to compute a modified magnetic-Richardson number that takes into account the 

magnetic force misalignment. 

S4. Determination of Experimental Domains 
In-vivo experiments often contain a wide range of physical variables that fold into the development of the 

three non-dimensional numbers. These numbers are dictated by the biology of the system studied and include 

items such as varying blood vessel widths, blood vessel velocities, and diffusion coefficients within various 

tissues, membranes, and blood vessels. Typically information is not known about the exact physical variables 

experienced by every nano-particle within the animal or human at any specific time. Some particles can be 

within liver regions, while others are floating within skin tissue. Therefore, the analysis of the entire biological 

system must include educated estimates for the expected range of all the key non-dimensional numbers. Our 

three non-dimensional numbers are written again below with the biologically varying parameters marked by a 

double underline: 
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S4.1. Magnetic-Richardson Number Range 

As shown in equation (S10), the magnetic-Richardson number is only dependent upon one biological variable: 

the centerline blood velocity. Therefore the range of the magnetic-Richardson number is as follows 
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where maxBV  is the centerline (maximum) velocity in the blood vessel and
max

and
min

denote the maximum 

and minimum of this velocity across physiological conditions, at major veins versus capillaries respectively.  

S4.2. Renkin Reduced Diffusion Coefficient Range 

Equation (S12) illustrates the fact that the Renkin reduced diffusion coefficient is dependent upon the diffusion 

in the membrane, the diffusion in the tissue, and the scattering diffusion coefficient due to blood vessel size 

and velocity. The tissue and membrane diffusion coefficients are properties of the tissue and can range from a 

lower bound of ‘zero’ when the particle is larger than the membrane pores or tissue interstitial spaces, to an 

upper bound equal to the diffusion coefficient within the blood. The scattering diffusion coefficient can be 

estimated by using the following formula [68] 
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where  the dimensionless coefficient is 2105 −×=shK , the red blood cell radius is 61026.4 −×=RBCr  m, and γ&  is 

the shear rate at the vessel wall. Therefore the range for all Renkin reduced diffusion coefficients is  
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S4.3. Mass Péclet Number Range 

The mass Péclet number varies with more complexity than the other two numbers as is evident from equation 

(S11). The numerator varies not only with the centerline velocity of a vessel but also with the diameter of that 

vessel. Physiologically the velocity is also dependant upon the diameter of the vessel and the exact shape of 

this dependency is not linear. In addition the denominator is also dictated by the scattering diffusion 

coefficient that is governed by the vessel diameter. From equations (S11) and (S14), the needed dependencies 

and bounds on the Péclet number are 
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To understand the shape of the mass Péclet curve, the relationship between the vessel diameter and 

centerline blood velocities must be known or estimated. For some organisms, i.e. humans, this relationship is 

well known [95] and appropriate bounds for these data points can be determined. For other organisms, i.e. 

rats, the relationship is not well known and bounds must be estimated more roughly to allow all possibilities. 
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Figure S9 shows the relationship within humans for the vessel diameter to the vessel velocity [95] with our two 

chosen bounding curves for the data shown.  

 

The combination of these ranges for the non-dimensional numbers generates the shape of the experimental 

domains seen in Figure 11 of the main text. These domains are simple (conservative) rectangles when only 

general physiological information is known (Bergemann, Widder), they are tighter curved domains for the 

situation in humans (Lubbe) where more specific physiological information is available.  
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Figure S9:  Relationship between vessel diameter and blood vessel velocity 

within humans [95]. Our chosen upper and lower limits to bound the data are 

shown. 




